

batou

automating web application deployments

Release v2.3.1.

[image: build-status] [image: github-stars] [image: badge-opensource] [image: badge-downloads] [image: badge-python]

batou is a BSD-licensed utility, written in Python, to configure
development and production environments for web applications.

Deployments are hard and complicated. Tools like Docker, Puppet, chef, and
others exist that try to solve this problem once and for all. However, they
usually need you to change your workflow or toolchain massively while still
missing important steps.

batou makes deployments more bearable without requiring developers to change
their applications. It provides a “one command” approach that should never
need additional wrapper scripts.

As a developer all you ever have to run after cloning or updating your project
is:

$ git clone https://github.com/myorg/myproject
$ cd myproject
$./batou deploy dev

To run a production deployment all you should ever have to run is:

$ cd my-project
$ git pull
$./batou deploy prod

Writing a deployment with batou is a two step process:

Step 1: Model your application’s configuration

With our component model you write a configuration specification in Python
based on a simple API. Components make configuration convergent [https://en.wikipedia.org/wiki/Convergence_(logic)] and idempotent [https://en.wikipedia.org/wiki/Idempotence]
and using Python lets you perform any computation you need. The component
model is recursive, so you can refactor complicated components into simpler
ones without breaking your setup.

Here is an example application model that installs a Python package into a
VirtualEnv and asks Supervisor to run it:

from batou.component import Component
from batou.lib.python import VirtualEnv, Package
from batou.lib.supervisor import Program

class MyApp(Component):

 def configure(self):
 venv = VirtualEnv('3.5')
 self += venv
 venv += Package('myapp')
 self += Program('myapp', command='bin/myapp')

Step 2: Fit your model to your environments

Your model from step 1 is abstract: it does not mention the names of the
servers you deploy to.

By describing an environment you tell batou how your abstract model should
actually be applied: on your local development machine, to a vagrant setup, or
on servers on the network.

Here’s an environment specification that sets up an application on multiple
hosts and provides an override for the publicly visible address.

[environment]
host_domain = fcio.net

[host:host01]
components = nginx, haproxy, varnish

[host:host02]
components = myapp

[host:host03]
components = myapp

[host:host04]
components = postgresql

[component:nginx]
server_name = staging.example.com

Features

	Run the same command to deploy locally, to Vagrant, or to remote clusters.

	Use different versions of batou in different projects. batou automatically
ensures everyone uses the correct version in each project and updates when
needed.

	Check before deploying whether your configuration is internally consistent and consistent with what has been deployed before.

	Predict changes and predict what further changes will be triggered.

	Convergent, idempotent components are fast to deploy.

	Resume partial deployments where they were aborted.

	Store database passwords, SSH keys, SSL certificates or other secret data with on the-fly decryption. Manage access to secrets per environment and user.

	Use Jinja2 templates to easily create dynamic configuration.

	Dynamically connect services during deployments and track their dependencies.

	Few run-time requirements on your servers: only Python 2.7 and SSH are needed.

	Use pre-defined components to manage files, python environments, supervisor, cronjobs, and more.

	Writing your own components is easy and you can use additional Python
package dependencies.

User guide

This part of the documentation, begins with some background information about Requests, then focuses on step-by-step instructions for getting the most out of batou.

	Introduction
	Philosophy

	Name

	Kudos

	Legal

	Installation
	Starting a new batou project

	Local

	Remote

	Supported Platforms

	Optional requirements

	Distribution-specific installation instructions

	Quickstart
	Create a new project

	Writing a component configuration

	Local environments

	Vagrant environments

	Remote environments

	Overriding configuration per environment

	Templating from files

	Storing secrets as encrypted overrides

	Storing additional secrets as separate files

	Using version control to ensure consistent deployments

	Downloading and building software

	Managing Python environments with VirtualEnv and Pip

	Managing Python environments with zc.buildout

	Registering programs with supervisor

	Working with network addresses

	Registering and discovering services

	Checking a deployment configuration before running it

	Predicting the changes a deployment will cause

	Updating batou in an existing project

	Advanced Usage
	Writing a custom component (TODO)

	Debugging batou runs

	Using 3rd party libraries within batou

	Multiple components in a single component.py (TODO)

	Skipping individual hosts or components when deploying (TODO)

	Events (TODO)

	Using bundle transfers if the repository server is not reachable from your remote server (TODO)

	Timeout (TODO)

	VFS mapping for development (TODO)

	VFS mapping with explicit rewrite rules (TODO)

	Extended service discovery options (TODO)

	Platform-specific components

	Host-specific data

	DNS overrides

	context manager (TODO)

	last_updated (TODO)

	prepare, |=, component._ (TODO)

	workdir overriding (TODO)

	Importing components from a different component.py

Command line

If you are looking for information on what commands the batou CLI provides then this is for you.

	Command Line Usage
	General options

	batou deploy

	batou secrets edit

	batou secrets summary

	batou secrets add

	batou secrets remove

Components

This is the list of components that batou provides – builtin and through the batou_ext package:

	Managing files and directories
	Files and Templates

	Directories

	Removing files

	Extracting archive files

	VFS mapping (TODO)

	Downloads and VCS checkouts
	Downloading files

	Mercurial

	Git

	Subversion

	Building software

	Managing python installations
	virtualenv

	Installing packages

	zc.buildout

	Managing services
	Supervisor (TODO)

	SystemD

API

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

	Component Python API
	Component

	Attribute (TODO)

	Host (TODO)

	Environment (TODO)

	Environment configuration
	Component assignment (TODO)

	General parameters (TODO)

	vfs mapping (TODO)

	Root-component attribute overrides (TODO)

	Jinja2 templates (TODO)

	Utilities

	Exceptions

Contributor guide

If you want to contribute to the project, this part of the documentation is for you.

	Contributor’s guide

	Testing

	How to Help

	Authors

Support

batou itself is released “as is”. We hang around #batou in the Freenode IRC
network. You can also report bugs to our bugtracker [https://github.com/flyingcircusio/batou/issues].

Commercial support

We will be happy to give you commercial support for batou: feature
implementation, bug fixing, consulting, or education.

To get in touch, send an email to mail@flyingcircus.io and we’ll
be happy to discuss your requirements.

Resources

	Changelog

	2.3.1 (2023-05-22)

	2.3 (2023-01-24)

	2.3b6 (2022-12-09)

	2.3b5 (2022-09-21)

	2.3b4 (2022-08-22)

	2.3b3 (2021-11-30)

	2.3b2 (2021-10-05)

	2.3b1 (2021-05-21)

	2.2.4 (2021-02-11)

	2.2.3 (2021-01-20)

	2.2.2 (2020-12-14)

	2.2.1 (2020-12-14)

	2.2 (2020-12-10)

	2.1 (2020-09-09)

	2.0 (2020-07-15)

	2.0b14 (2020-06-25)

	2.0b13 (2020-06-25)

	2.0b12 (2020-05-13)

	2.0b11 (2020-05-13)

	2.0b10 (2020-05-11)

	2.0b9 (2020-05-09)

	2.0b8 (2020-05-08)

	2.0b7 (2020-05-07)

	2.0b6 (2020-04-24)

	Upgrading

Presentations from conferences:

	EuroPython 2013 - batou (talk slides) [http://www.slideshare.net/theuni/batou-multicomponenthostenvironment-deployment]

	PyConDE 2013 - batou (talk video, German)

Introduction

Philosophy

batou was developed with a number of ideas in mind:

	Deploying should always be just a single command.

	Python is the language batou uses. In case that you use Python to write
your application the version of Python that batou runs on is independent
of the version of Python your application runs with.

	We expect little from the remote environments
regarding software dependencies: Python 3.5+, OpenSSH, and rsync, Mercurial
or git are sufficient.

	batou does not become an active component during your
application’s runtime. batou automates what a sysadmin would do – in a
repeatable and documented manner.

	It should be easy to switch between the declarative
part of the model and the imperative implementation.

	Deployment code that becomes too complicated
should be easy to simplify by breaking it up into smaller pieces.

	batou was not originally intended to perform provisioning or
system configuration tasks. However, over time this is likely to evolve.

	batou should be working with your existing applications without
too many hassles.

	No silver bullets: we want to make things simple for you but we do
not insulate you from hurting yourself completely.

Name

The name “batou” is taken from the animated movie “Ghost in the Shell”.

Kudos

batou is built on the shoulders of giants. We’re extremely happy to be part
of an active open source community:

	Guido and the Python core developers – we could not have built this
without such an awesome language.

	Jim Fulton (@j1mfulton) and zc.buildout – we love using buildout to create
Python application environments, but we started having our own ideas at some
point.

	Kenneth Reitz (@kennethreitz) and the Requests team – who built the awesome
requests library. He and his team have brilliant documentation. When it came
to finally document batou we used their works – quite literally and
generously! Everything that is awesome about our documentation stems from
them. Everything that sucks was caused by us (if you want to help us improve
– you’re more than welcome!).

	Jeff Forcier (@bitprophet) of Fabric and Paramiko fame – we’ve made huge
advances when we switched from bash scripts to Fabric and kept refactoring
until our Fabfile slowly turned into batou. We’ve used Paramiko before
switching to execnet which gave us a nice way to slowly grow out of Fabric.

	Holger Krekel (@hpk42) who gave us py.test and execnet – without those
tools we would not have such a nice test suite and execnet is brilliant for
lightweight remote Python processing.

Legal

The copyright holder for batou is:

Flying Circus Internet Operations GmbH
Leipziger Str. 70/71
06108 Halle (Saale)
GERMANY

The code of batou is licensed under the 2-clause BSD license:

Copyright (c) 2012-2014, gocept gmbh & co. kg
Copyright (c) 2015-2021, Flying Circus Internet Operations GmbH
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Flying Circus Internet Operations GmbH.

Installation

batou is installed in each of your projects to ensure that every project is run
with the correct version of batou and possibly other dependencies. Typically
this means you create a new deployment repository for every project.

Starting a new batou project

A new project is started by placing the batou master command into the project and adding that to your repository:

$ mkdir myproject
$ cd myproject
$ git init
$ curl -sL https://raw.githubusercontent.com/flyingcircusio/batou/2.3b3/bootstrap | sh
$ git commit -m "Start a batou project."

Local

To run the batou command on your machine you will need to have the following
dependencies installed:

	Python 3.5+

	OpenSSH

	GPG (optional, if you want to use encrypted secrets support)

	Mercurial, git, or rsync (you only need to have the one installed you actually use to transfer your repository)

Remote

To deploy on a remote server, that server needs to have installed:

	Python 3.5+

	OpenSSH

	Mercurial, git or rsync (you only need to have the one installed you actually use to transfer your repository)

Supported Platforms

batou is being tested to run on Linux and Mac OS X.

We do not support deploying from or to non-UNIX targets.

batou is written in Python and requires to be run with Python 3.5+.

Optional requirements

Depending on the actual components you are going to install, you may need to have those packages installed on your remote machines:

	git [http://git-scm.com/] if using the batou.lib.git.Clone component

	make [http://www.gnu.org/software/make/] if using the
batou.lib.cmmi.Build component

	nrpe [http://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details]
if using the batou.lib.nagios.NRPEHost component

	rsync [http://rsync.samba.org/] if using the batou.lib.file.Directory component

	subversion [http://subversion.apache.org/] if using the
batou.lib.svn.Checkout component

	unzip [http://www.info-zip.org/UnZip.html] and tar [http://www.gnu.org/software/tar/tar.html] if using the
batou.lib.archive.Extract component

Distribution-specific installation instructions

	Install batou’s requirements on Debian / Ubuntu / Mint

	Install batou’s requirements on Fedora / openSUSE / RHEL / CentOS

Install batou’s requirements on Debian / Ubuntu / Mint

Depending on you specific distribution, software packages either need to be
installed using apt-get or aptitude. apt-get is more specific to
Ubuntu and its derivates, whereas aptitude is typically used on Debian. In
our examples below, we will stick to apt-get.

Note

RPM-based environments are not native for any of the developers and
not tested systematically. Let us know if any of this information is
incorrect and we’ll gladly update this.

Python 3

In many distributions, Python 3 should ship as the default system Python and
should therefore already be installed. If not, you can install it by executing:

sudo apt-get install python3-dev

Note

Although installing using sudo apt-get install python3 would be
sufficient, we choose to python3-dev because having the additional
development packages installed does not hurt and may help in situations
that require functionality that is not included in the base package.

virtualenv

virtualenv creates isolated environments for Python, where you can install and
upgrade libraries isolated from the system libraries and other environments on
the system. You can install virtualenv by executing:

sudo apt-get install python3-virtualenv

Mercurial

Mercurial is a distributed source control management tool. You can install
Mercurial by executing:

sudo apt-get install mercurial

SSH client

The OpenSSH client should ship with nearly any distribution and should already
be installed. If not, you can install it by executing:

sudo apt-get install openssh-client

Git

Git is a distributed revision control and source code management system. You can
install Git by executing:

sudo apt-get install git

In some cases you may want more functionality than the basic git package
offers. To get a list of software packages related to git, execute:

sudo apt-cache search . | grep ^git

You can then install the respective package with apt-get like we did for
git.

make

GNU Make is a tool which controls the generation of executables and other
non-source files of a program from the program’s source files. It is typically
available on nearly any Linux distribution.

Since it is heavily involved in self-compiling software, it is advisable to
additionally install a useful set of packages that helps compiling software:

sudo apt-get install build-essential

NRPE

NRPE is an add-on for Nagios that allows you to execute plugins and commands on
remote Linux/Unix machines. NRPE can be installed by executing:

sudo apt-get install nagios-nrpe-server

rsync

rsync is a file synchronization and file transfer program for Unix-like systems.
You can install rsync by executing:

sudo apt-get install rsync

Subversion

Subversion is a software versioning and revision control system. To install it,
execute:

sudo apt-get install subversion

Note

Additionally installing the package subversion-tools may be
helpful when you need more functionality and helper tools for
Subversion.

UnZip

UnZip is an extraction utility for archives compressed in .zip format. You can
install it by executing:

sudo apt-get install unzip

Tar

GNU Tar provides the ability to create tar archives, as well as various other
kinds of manipulation. It should already ship with nearly any Linux
distribution. If not, you can install it by executing:

sudo apt-get install tar

Install batou’s requirements on Fedora / openSUSE / RHEL / CentOS

On rpm-based Linux distributions software packages are usually installed using
yum [http://yum.baseurl.org/].

Note

RPM-based environments are not native for any of the developers and
not tested systematically. Let us know if any of this information is
incorrect and we’ll gladly update this.

Python 3

In many distributions, Python 3 should ship as the default system Python and
should therefore already be installed. If not, you can install it by executing:

sudo yum install python-devel

Note

Although installing using sudo yum install python would be
sufficient, we choose to python-devel because having the additional
development packages installed does not hurt and may help in situations
that require functionality that is not included in the base package.

virtualenv

virtualenv creates isolated environments for Python, where you can install and
upgrade libraries isolated from the system libraries and other environments on
the system. You can install virtualenv by executing:

sudo yum install python-virtualenv

Mercurial

Mercurial is a distributed source control management tool. You can install
Mercurial by executing:

sudo yum install mercurial

SSH client

The OpenSSH client should ship with nearly any distribution and should already
be installed. If not, you can install it by executing:

sudo yum install openssh-clients

Git

Git is a distributed revision control and source code management system. You can
install Git by executing:

sudo yum install git

In some cases you may want more functionality than the basic git package
offers. To get a list of software packages related to git, execute:

sudo yum search git | grep ^git

You can then install the respective package with yum like we did for
git.

make

GNU Make is a tool which controls the generation of executables and other
non-source files of a program from the program’s source files. It is typically
available on nearly any Linux distribution.

Since it is heavily involved in self-compiling software, it is advisable to
additionally install a useful set of packages that helps compiling software:

sudo yum groupinstall "Development Tools"

Alternatively, you can install the most basic tools for compiling software by
executing:

sudo yum install gcc gcc-c++ kernel-devel

NRPE

NRPE is an add-on for Nagios that allows you to execute plugins and commands on
remote Linux/Unix machines. NRPE can be installed by executing:

sudo yum install nrpe

rsync

rsync is a file synchronization and file transfer program for Unix-like systems.
You can install rsync by executing:

sudo yum install rsync

Subversion

Subversion is a software versioning and revision control system. To install it,
execute:

sudo yum install subversion

Note

Additionally installing the package subversion-tools may be
helpful when you need more functionality and helper tools for
Subversion.

UnZip

UnZip is an extraction utility for archives compressed in .zip format. You can
install it by executing:

sudo yum install unzip

Tar

GNU Tar provides the ability to create tar archives, as well as various other
kinds of manipulation. It should already ship with nearly any Linux
distribution. If not, you can install it by executing:

sudo yum install tar

Quickstart

Do you want to get started? We’ll go through the steps of developing a project
with batou. The steps are built on top of each other, so if you have trouble
with a specific step, it might help to review what happened earlier.

Create a new project

Deployments with batou are placed in a new directory. For this tutorial
we will assume that you’re using git as your version control system. Feel
feel free to follow along using Mercurial – batou can handle both.

$ mkdir myproject
$ cd myproject
$ git init
$ curl -sL https://raw.githubusercontent.com/flyingcircusio/batou/main/bootstrap | sh
$ git commit -m "Start a batou project."

The project is now initialized and batou is ready to be used.

Writing a component configuration

Once you bootstrapped your batou project you start modelling your
configuration. This is done by creating a directory in the components
directory and a component.py file in there. You can use those sub-
directories to group together things that belong to each component:

$ cd myproject
$ mkdir -p components/myapp

In components/myapp/component.py put the following to manage a very
simple application:

components/myapp/component.py (v1)

from batou.component import Component
from batou.lib.file import File

class Tick(Component):

 def configure(self):
 self += File(
 'tick.sh',
 mode="rwxr-xr-x", # note: you can also pass an octal number, e.g. 0o755
 content="""\
#!/bin/bash
while true; do
 date
 sleep 1
done
""")

The component has a configure method that is used to build a model of your
configuration as a tree of components. By using the syntax self += File(...)
you add a File component as a sub-component to your Tick component. Components
can thus recursively combine configurations into larger, more complex setups.

The order of sub-components is given by the order they are added to their
parent.

Local environments

Now, to deploy this “application” we can specify a local environment to deploy
directly on the machine you are working on:

$ mkdir environments

Put the following in environments/local/environment.cfg to specify a local
configuration that will deploy the “Tick” component:

environments/local/environment.cfg (v1)

[environment]
connect_method = local

[hosts]
localhost = tick

Your project now looks like this:

$ tree
.
├── batou
├── components
│ └── myapp
│ └── component.py
└── environments
 └── local
 └── environment.cfg

You can now deploy this environment:

$./batou deploy local
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
============================== Preparing ===============================
main: Loading environment `local`...
main: Verifying repository ...
main: Loading secrets ...
======================= Configuring first host =========================
localhost: Connecting via local (1/1)
===================== Connecting remaining hosts =======================
============================== Deploying ===============================
localhost: Deploying component tick ...
 Tick > File(work/tick/tick.sh) > Presence(work/tick/tick.sh)
 Tick > File(work/tick/tick.sh) > Mode(work/tick/tick.sh)
 Tick > File(work/tick/tick.sh) > Content(work/tick/tick.sh)
========================= DEPLOYMENT FINISHED ==========================

When deploying, batou creates a working directory for each component. Your
project directory now looks like this:

$ tree
.
├── batou
├── components
│ └── myapp
│ └── component.py
├── environments
│ └── local
│ └── environment.cfg
└── work
 └── tick
 └── tick.sh

The application has been copied over to the work directory and the mode has
been set. We can now use it:

$./work/tick/tick.sh
Thu Jan 28 21:47:58 CET 2016
Thu Jan 28 21:47:59 CET 2016
Thu Jan 28 21:48:00 CET 2016
Thu Jan 28 21:48:01 CET 2016
Thu Jan 28 21:48:02 CET 2016
Thu Jan 28 21:48:03 CET 2016
^C

When running the deployment again, you see that batou knows what has been
deployed and that no action is necessary:

$./batou deploy local
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
============================== Preparing ===============================
main: Loading environment `local`...
main: Verifying repository ...
main: Loading secrets ...
======================= Configuring first host =========================
localhost: Connecting via local (1/1)
===================== Connecting remaining hosts =======================
============================== Deploying ===============================
localhost: Deploying component tick ...
========================= DEPLOYMENT FINISHED ==========================

Note

Things in the work directory are generated or data from your application –
you should thus add the work directory to your version control systems’
ignore file.

Vagrant environments

If you would like to deploy a more complex application, that may involve
a webserver, databases, and other auxiliary services, you may prefer to
deploy into a virtual machine, instead of deploying those to your local
work environment.

For this, batou supports Vagrant [http://vagrantup.com]. Once you have
Vagrant (and VirtualBox) installed, place a Vagrantfile directory in
your batou project:

Vagrantfile

-*- mode: ruby -*-
vi: set ft=ruby :

required_plugins = %w(vagrant-nixos-plugin)
required_plugins.each do |plugin|
 abort("Plugin required: vagrant plugin install #{plugin}") unless Vagrant.has_plugin? plugin
end

Vagrant.configure("2") do |config|
 config.vm.box = "flyingcircus/nixos-19.03-dev-x86_64"
 config.vm.box_version = "= 471.427aac1"

 config.vm.network "private_network", ip: "192.168.50.4"
end

Now, we add a second environment that uses Vagrant to connect and rsync
to ensure that our batou project gets synced. The user we want to deploy
to in a vagrant box is vagrant and we specify that as the service user.
The machine in our Vagrant file is “default”, so we use that as the hostname:

environments/vagrant/environment.cfg

[environment]
connect_method = vagrant
update_method = rsync
service_user = vagrant

[hosts]
default = tick

The deployment is invoked similar to the local deployment. Getting the
vagrant machine up and running may take a while, though:

$./batou deploy vagrant
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
=========================== Preparing ============================
main: Loading environment `vagrant`...
main: Verifying repository ...
 You are using rsync. This is a non-verifying repository --
 continuing on your own risk!
main: Loading secrets ...
===================== Configuring first host =====================
vagrant: Ensuring machines are up ...
default: Connecting via vagrant (1/1)
=================== Connecting remaining hosts ===================
=========================== Deploying ============================
default: Deploying component tick ...
 Tick > File(work/tick/tick.sh) > Presence(work/tick/tick.sh)
 Tick > File(work/tick/tick.sh) > Mode(work/tick/tick.sh)
 Tick > File(work/tick/tick.sh) > Content(work/tick/tick.sh)
====================== DEPLOYMENT FINISHED =======================

Now, the tick component has been deployed on the virtual machine. We can
connect there and see that the same structure has been deployed as previously
for our local environment. batou places deployments in the service user’s
home directory in a directory named deployment by default:

$ vagrant ssh
[vagrant@nixos:~]$ tree
.
└── deployment
 ├── batou
 ├── components
 │ └── myapp
 │ └── component.py
 ├── environments
 │ ├── local
 │ │ └── environment.cfg
 │ └── vagrant
 │ └── environment.cfg
 ├── Vagrantfile
 └── work
 └── tick
 └── tick.sh
[vagrant@nixos:~]$./deployment/work/tick/tick.sh
Thu Jan 28 21:02:31 UTC 2016
Thu Jan 28 21:02:32 UTC 2016
Thu Jan 28 21:02:33 UTC 2016
^C

Similarly, you can deploy into VMs that were set up by the test kitchen [https://kitchen.ci] integration testing tool:

.kitchen.yml

driver:
 name: vagrant

platforms:
 - name: ubuntu-16.04

suites:
 - name: tick

environments/kitchen/environment.cfg

[environment]
connect_method = kitchen
update_method = rsync
service_user = vagrant

[hosts]
tick-ubuntu-1604 = tick

$./batou deploy kitchen

Remote environments

To deploy your application into a production environment you will typically
use SSH to log in to the remote servers. This works similar to Vagrant
environments. To try this out, you will have to replace the host name you
see here, with a host that you have access to.

Note

Make sure that the few but important
installation requirements requirements for remote hosts
are satisfied!

Let’s add a third environment that uses SSH to connect and rsync
to ensure that our batou project gets synced. We do not specify the user to
deploy to, which means batou will use whatever your SSH configuration is set
up to use. To save some typing (and for some other features) we specify
a domain name that should be appended to all hosts.

Here’s the full environment configuration:

environments/production/environment.cfg (v2)

[environment]
connect_method = ssh
update_method = rsync
host_domain = fcio.net

[hosts]
test01 = tick

Now, to deploy to the remote host:

$./batou deploy production
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
=========================== Preparing ============================
main: Loading environment `production`...
main: Verifying repository ...
 You are using rsync. This is a non-verifying repository --
 continuing on your own risk!
main: Loading secrets ...
===================== Configuring first host =====================
test01: Connecting via ssh (1/1)
=================== Connecting remaining hosts ===================
=========================== Deploying ============================
test01.gocept.net: Deploying component tick ...
 Tick > File(work/tick/tick.sh) > Presence(work/tick/tick.sh)
 Tick > File(work/tick/tick.sh) > Mode(work/tick/tick.sh)
 Tick > File(work/tick/tick.sh) > Content(work/tick/tick.sh)
====================== DEPLOYMENT FINISHED =======================

Overriding configuration per environment

Every environment is currently deploying the same configuration of our
application. It often is necessary to customize applications based on the
environment: either your setup is larger or smaller, or you are using
a different web address to access it, or …

To make a component configurable, we add an attribute to the component
class:

components/myapp/component.py (v2)

from batou.component import Component, Attribute
from batou.lib.file import File

class Tick(Component):

 sleep = Attribute(int, 1)

 def configure(self):
 self += File(
 'tick.sh',
 mode="rwxr-xr-x",
 content="""\
#!/bin/bash
while true; do
 date
 sleep {}
done
""".format(self.sleep))

Attributes are specified with a conversion function or type, to help batou
convert them from strings. The second argument given is the default that will
be used when attribute is not specified explicitly otherwise. The attribute
can then be accessed as usual during the configure method and include this in
our application configuration.

To adjust the application for the development environment, we add a new
section [component:tick] to the configuration:

environments/local/environment.cfg (v2)

[environment]
connect_method = local

[hosts]
localhost = tick

[component:tick]
sleep = 10

Now, let’s deploy this:

$./batou deploy local
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
=========================== Preparing ============================
main: Loading environment `local`...
main: Verifying repository ...
main: Loading secrets ...
===================== Configuring first host =====================
localhost: Connecting via local (1/1)
=================== Connecting remaining hosts ===================
=========================== Deploying ============================
localhost: Deploying component tick ...
 Tick > File(work/tick/tick.sh) > Content(work/tick/tick.sh)
====================== DEPLOYMENT FINISHED =======================

$ cat work/tick/tick.sh
#!/bin/bash
while true; do
 date
 sleep 10
done

$./work/tick/tick.sh
Fri Jan 29 09:44:18 CET 2016
Fri Jan 29 09:44:28 CET 2016
^C

Now, our model specific the default configuration and environment-specific
overrides allow us to document variations between environments easily.

Templating from files

Currently our application configuration has been written directly in Python
code. This quickly becomes unwieldy. File components can be used to pull their
content from files by specifying the source parameter. The filename is
relative to the directory that the component.py is placed in:

components/myapp/component.py (v3)

from batou.component import Component, Attribute
from batou.lib.file import File

class Tick(Component):

 sleep = Attribute(int, 1)

 def configure(self):
 self += File(
 'tick.sh',
 mode="rwxr-xr-x",
 source='tick.sh')

Also, templating with Python format strings is very limited. batou thus
includes Jinja2 templating, which is enabled by default for all content
(independent of whether you specify the content inline or in a separate file).

components/myapp/tick.sh (v1)

#!/bin/bash
while true; do
 date
 sleep {{component.sleep}}
done

As a simplification, you can leave out the source parameter if the
filename of your template is identical to the name you want it to be in the
work directory:

components/myapp/component.py (v4)

from batou.component import Component, Attribute
from batou.lib.file import File

class Tick(Component):

 sleep = Attribute(int, 1)

 def configure(self):
 self += File('tick.sh', mode="rwxr-xr-x")

To disable templating and encoding handling, you can use the BinaryFile
component:

from batou.component import Component
from batou.lib.file import BinaryFile

class Example(Component):

 def configure(self):
 self += BinaryFile('something.zip')

Storing secrets as encrypted overrides

To deploy services we need to move secret data, like database passwords,
third party API tokens, SSL certificates, SSH keys, etc. to the target
environment. Simply adding those to your deployment scripts has a huge
drawback:

	it’s unsafe to pass the scripts to a third party like Github

	you can’t let others review your code without accidentally revealing those

	you can’t manage which of your colleagues can access development, staging, or
production secrets.

batou has a built-in method to store secrets in a secure and flexible fashion:
secrets are an encrypted version of the overrides we have already used: they
are stored in one file per environment, in the same format as the environment
configuration, and they control which of your users have access to them.

To start managing a secret, first add a new override attribute
database_password to your component:

components/myapp/component.py (v5)

from batou.component import Component, Attribute
from batou.lib.file import File

class Tick(Component):

 database_password = Attribute(str, None)
 sleep = Attribute(int, 1)

 def configure(self):
 self += File('tick.sh', mode="rwxr-xr-x")

components/myapp/tick.sh (v2)

#!/bin/bash
while true; do
 date
 echo "The database password is {{component.database_password}}"
 sleep {{component.sleep}}
done

Now, to edit the secret, batou provides a set of commands. Let’s edit the
secrets file for our production environment:

$./batou secrets edit production

This opens up your preferred editor and provides you with a template file:

secrets/production.cfg (decrypted) (v1)

[batou]
members =

The members option is used to control who the file will be encrypted for –
and thus who can decrypt it in the future. You can specify any ID that GnuPG
will accept as a key ID, which usually means you use your email address
associated with your key.

To get started with GPG, check the
GnuPG HOWTOs [https://www.gnupg.org/documentation/howtos.html].

In addition to your own key, you will have to add the IDs of any of your colleagues
that should be able to access this file.

Adding the database password works similar to the environment overrides. Our
final file then looks like this:

secrets/production.cfg (decrypted) (v2)

[batou]
members = bob@example.com, alice@example.com

[component:tick]
database_password = AfMhV3EDznGbNnzVdxE8

To finish, save the file and exit your editor. batou will be careful not to
leave any unencrypted copy of the file around so you do not accidentally check
in the unencrypted version.

The encrypted version of the file is now stored in secrets/production.cfg
and might look like this:

secrets/production.cfg (encrypted, hexdump -C)

00000000 85 02 0c 03 e4 fa c7 12 8f d9 8a 97 01 0f fe 32 |...............2|
00000010 d0 f7 f2 51 77 b5 89 9c cb 3f 78 15 94 20 d9 dd |...Qw....?x.. ..|
00000020 7d c3 52 93 e0 cc c5 09 c8 01 bc 32 11 fc 0c d0 |}.R........2....|
00000030 04 13 09 47 ab 2b e2 f0 12 51 fe 26 23 84 5d d6 |...G.+...Q.&#.].|
00000040 19 28 8f 6b f1 4b dc 39 cb 95 dd 31 52 09 b8 f0 |.(.k.K.9...1R...|
00000050 c8 99 0a 86 d3 f1 28 e6 6a 41 39 45 d3 ae 9a 01 |......(.jA9E....|
00000060 07 22 7b ce 7d b4 7c d5 22 16 11 8a 1d a5 9f cb |."{.}.|.".......|
00000070 96 50 1e 30 16 ec 45 44 10 c0 73 40 e0 97 23 bf |.P.0..ED..s@..#.|
00000080 ac b9 ea 46 df c4 67 a4 83 ae 4a 24 e4 6e 13 f9 |...F..g...J$.n..|
00000090 ad 9d 87 07 59 d4 46 0b 53 80 50 c1 e0 1d 79 be |....Y.F.S.P...y.|
000000a0 53 e5 25 15 de 54 6d 65 be 37 35 81 4d 34 55 35 |S.%..Tme.75.M4U5|
000000b0 3c 08 13 db cf 0e e8 f5 9d fb f2 09 ca 22 f2 97 |<............"..|
000000c0 8d bb bb 7c 6e e4 b9 7a 92 eb 75 08 43 15 f9 07 |...|n..z..u.C...|
000000d0 40 24 a8 8e a1 4d 53 6f 7b fe df 07 d8 89 29 ad |@$...MSo{.....).|
000000e0 a2 df 0d 40 d4 7e 25 b4 b7 cd e9 e8 71 de ff df |...@.~%.....q...|
000000f0 b8 0d 4f bd 83 63 c0 02 88 d2 79 48 f6 05 76 66 |..O..c....yH..vf|
00000100 76 b3 44 34 36 74 16 b6 1d f1 c0 38 9a ac 33 e5 |v.D46t.....8..3.|
00000110 99 1c 69 10 45 72 28 8f f8 b5 e1 71 71 fb 8e 8a |..i.Er(....qq...|
00000120 e7 13 a4 0d dc 1e 42 f1 82 c6 83 cf a0 d8 ef e9 |......B.........|
00000130 f8 33 0c 8c 10 f8 5a 56 69 47 3f d4 65 57 10 1d |.3....ZViG?.eW..|
00000140 cb 19 4d 51 68 d5 68 fe 82 c1 4f 7b e9 b9 23 12 |..MQh.h...O{..#.|
00000150 04 41 a0 88 14 85 27 23 86 92 77 62 7a 20 80 74 |.A....'#..wbz .t|
00000160 14 9e c7 e8 82 79 1c 10 04 f5 f4 67 94 b7 3e 8e |.....y.....g..>.|
00000170 30 95 57 ab 0e 20 fb 4a 1f 10 c2 60 38 63 78 41 |0.W.. .J...`8cxA|
00000180 38 32 0d 48 35 3e b2 d1 19 9e 37 02 26 6f 11 c3 |82.H5>....7.&o..|
00000190 83 8f dd fe 11 12 8b c8 43 96 dd 49 b7 db f1 b7 |........C..I....|
000001a0 e9 09 44 8b 23 0d 71 3e cc f8 a7 d2 e2 79 65 94 |..D.#.q>.....ye.|
000001b0 53 36 c6 43 19 df 7d 69 33 cb c0 ab 4c c3 db 7f |S6.C..}i3...L...|
000001c0 b3 8f a9 35 a6 7d fb 94 6f df 04 37 88 44 a4 df |...5.}..o..7.D..|
000001d0 66 39 2d 17 f2 a9 57 60 2f 11 10 ff 43 03 58 4c |f9-...W`/...C.XL|
000001e0 5f bd f1 17 0c e8 c6 60 69 fe 6e 86 65 fa 12 2f |_......`i.n.e../|
000001f0 12 91 80 9e 5d f7 da df c0 6c 2a 90 40 94 f0 07 |....]....l*.@...|
00000200 3e a2 d6 07 83 71 28 e0 d3 26 76 51 d6 23 49 d2 |>....q(..&vQ.#I.|
00000210 95 01 24 3c 40 18 2c 05 65 4b c4 4a 86 3f 67 db |..$<@.,.eK.J.?g.|
00000220 ac 5c e8 3e 49 90 5f f9 66 e5 0f 35 ad e8 99 57 |.\.>I._.f..5...W|
00000230 13 b5 4a b4 59 38 de a0 1c 89 67 e3 2f 3e b1 d8 |..J.Y8....g./>..|
00000240 0b 37 b4 d6 58 ee bf 47 f6 53 64 ed 70 ba 37 f5 |.7..X..G.Sd.p.7.|
00000250 be 56 e0 69 52 18 0e 04 ff e4 2d 05 43 c5 a5 4f |.V.iR.....-.C..O|
00000260 04 a5 4e a1 d7 c4 5f 65 02 02 5c 29 fe 2c 34 c5 |..N..._e..\).,4.|
00000270 1b 65 4c 88 85 8c 6f ce 15 4e e7 43 2d db fb eb |.eL...o..N.C-...|
00000280 28 b6 b2 2b b1 cc b2 04 1b bd 17 a5 89 5c fd 3f |(..+.........\.?|
00000290 c7 bf 60 df 58 8d 41 35 2a 14 9f e5 99 83 a1 97 |..`.X.A5*.......|
000002a0 84 5a 5d ae 83 0e |.Z]...|
000002a6

Now, deploying this will cause GPG to be invoked on your local machine (there is no need to install GPG on the remote hosts) and transfer the decrypted secrets securely through
the SSH connection:

$./batou deploy production
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
=========================== Preparing ============================
main: Loading environment `production`...
main: Verifying repository ...
 You are using rsync. This is a non-verifying repository --
 continuing on your own risk!
main: Loading secrets ...

You need a passphrase to unlock the secret key for
user: "Bob Sample <bob@example.com>"
4096-bit RSA key, ID 4DE34B34, created 2013-10-05 (main key ID 4DE34B34)

===================== Configuring first host =====================
test01: Connecting via ssh (1/1)
=================== Connecting remaining hosts ===================
=========================== Deploying ============================
test01.gocept.net: Deploying component tick ...
 Tick > File(work/tick/tick.sh) > Content(work/tick/tick.sh)
====================== DEPLOYMENT FINISHED =======================

$ ssh test01.fcio.net
$ cat ./deployment/work/tick/tick.sh
while true; do
 date
 echo "The database password is AfMhV3EDznGbNnzVdxE8"
 sleep 1
done

If you deal with a growing number of environments and users, you can use the
commands batou secrets add and batou secrets remove to manage access
for users to multiple or all environments quickly.

Storing additional secrets as separate files

Sometimes the way to store secrets as overrides in an INI-style file is inconvenient: larger amounts of data (think SSL or SSH private keys) or
structured data that is hard to embed syntactically correct in the INI
format (think YAML).

For that you can split off this data into separate files (you still need to edit the main secrets file to tell batou which keys to encrypt for):

$./batou secrets edit production secretdata.yaml

This opens up your preferred editor and provides you with an empty file that you can edit.

secrets/production-secretdata.yaml (decrypted)

-
 a: 1
 list: 2
-
 with: 4
 multiple: 5
 dicts: 6

batou keeps the file suffix in the temporary file, so that your editor should be showing you appropriate syntax highlighting.

Whenever you edit one of the secret files of an environment all files will be reencrypted to be sure that they are encrypted with a consistent set of keys.

To use those secret files, you can simply retrieve them from the environment object in your deployment code via the secret_files dict:

components/myapp/component.py (v5)

from batou.component import Component
from batou.lib.file import File

class Tick(Component):

 def configure(self):
 self += File(
 'secrets.yaml',
 mode="rwxr-xr-x",
 content=self.environment.secret_files['secretdata.yaml'])

Using version control to ensure consistent deployments

Working in a team means that some of your colleagues may be deploying code
independent of you. Deploying when a colleague may have deployed last Friday
and forgot to push his code can lead to bad things happening …

batou supports integrating with Git or Mercurial to verify the repository
integrity on the target systems. This consists of multiple steps:

	Ensuring you do not have uncommitted changes and no unpushed commits in
your repository.

	Shipping changes to the remote servers (either via pulling from a central
server or using an export/import mechanism if you server has no access
to your central repository).

	Switching to an environment-specific branch.

	Ensuring the local working copy and the remote working copy
are the same.

To leverage those features in batou, you have to select an update method in
your environment that is not rsync. batou supports git-pull, git-
bundle, hg-pull and hg-bundle.

Lets use git-bundle for this example:

environments/production/environment.cfg (v1)

[environment]
connect_method = ssh
update_method = git-bundle
branch = production
host_domain = fcio.net

[hosts]
test01 = tick

To deploy to production we now end up with the following workflow:

$ git checkout -tb production
$ git merge master
$./batou deploy production
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
=========================== Preparing ============================
main: Loading environment `production`...
main: Verifying repository ...
main: Loading secrets ...
===================== Configuring first host =====================
test01: Connecting via ssh (1/1)
=================== Connecting remaining hosts ===================
=========================== Deploying ============================
test01.gocept.net: Deploying component tick ...
====================== DEPLOYMENT FINISHED =======================

Now, if the remote server would have incompatible changes, batou would
inform you and refuse to deploy until you clean up the situation:

$./batou deploy remote
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
=========================== Preparing ============================
main: Loading environment `production`...
main: Verifying repository ...
main: Loading secrets ...
===================== Configuring first host =====================
test01: Connecting via ssh (1/1)
ERROR: LANG=C LC_ALL=C LANGUAGE=C git bundle create /var/folders/
24/4w5jy6r532d0k5mgrrgkt0qm0000gn/T/tmp1ezxQj
36052b45d6cfd7ec7202cf34301fba76c1360c0e..production
 Return code: 1
STDOUT

STDERR
 fatal: Invalid revision range
 36052b45d6cfd7ec7202cf34301fba76c1360c0e..production
 error: rev-list died

======================= DEPLOYMENT FAILED ========================

Note

The error message may be cryptic at times, depending on the error situation of
your version control system, but you’ll get the gist to look at the repository
situation.

Downloading and building software

A typical action that you encounter when configuring software is to download
and compile them. This is also known as the “CMMI” method: configure, make,
make install.

batou provides a standard library component that subsumes downloading and
building standard packages:

components/zlib/component.py

from batou.component import Component
from batou.lib.cmmi import Build

class Zlib(Component):

 def configure(self):
 self += Build(
 'http://zlib.net/zlib-1.2.8.tar.gz',
 checksum='md5:1142191120b845f4ed8c8c17455420ac')

Deploying this demonstrates how the build component includes sub-components,
which you can also use to perform more fine-grained builds:

$./batou deploy local
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
=========================== Preparing ============================
main: Loading environment `local`...
main: Verifying repository ...
main: Loading secrets ...
===================== Configuring first host =====================
localhost: Connecting via local (1/1)
=================== Connecting remaining hosts ===================
=========================== Deploying ============================
localhost: Deploying component zlib ...
 Zlib > Build(zlib-1.2.8.tar.gz) > Extract(zlib-1.2.8.tar.gz) >
 Untar(zlib-1.2.8.tar.gz) > Directory(work/zlib/zlib-1.2.8)
 Zlib > Build(zlib-1.2.8.tar.gz) > Extract(zlib-1.2.8.tar.gz) >
 Untar(zlib-1.2.8.tar.gz)
 Zlib > Build(zlib-1.2.8.tar.gz) >
 Configure(/private/tmp/myproject/work/zlib/zlib-1.2.8)
 Zlib > Build(zlib-1.2.8.tar.gz) >
 Make(/private/tmp/myproject/work/zlib/zlib-1.2.8)
localhost: Deploying component tick ...
====================== DEPLOYMENT FINISHED =======================

Managing Python environments with VirtualEnv and Pip

Installing Python software has some best practices, that involve managing
virtual environments, using Pip or zc.buildout. batou provides components
that let you manage virtual environments (and automatically update them
and keep them in order) for different Python versions.

batou includes pre-defined versions of virtualenv and Pip for the various
supported Python versions.

Here is how a component installing Python packages looks like:

components/flask/component.py (v1)

from batou.component import Component
from batou.lib.python import VirtualEnv, Package

class Flask(Component):

 def configure(self):
 venv = VirtualEnv('3.5')
 self += venv

 venv += Package('Flask', version='0.10.1')

Add the “Flask” compoment to your local configuration:

environments/local/environment.cfg (v3)

[environment]
connect_method = local

[hosts]
localhost = tick, flask

[component:tick]
sleep = 10

$./batou deploy local
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
=========================== Preparing ============================
main: Loading environment `local`...
main: Verifying repository ...
main: Loading secrets ...
===================== Configuring first host =====================
localhost: Connecting via local (1/1)
=================== Connecting remaining hosts ===================
=========================== Deploying ============================
localhost: Deploying component tick ...
localhost: Deploying component zlib ...
localhost: Deploying component flask ...
 Flask > VirtualEnv(3.5) > VirtualEnvPy3_5 >
 VirtualEnvDownload(13.1.2) > Download(https://pypi.fcio.net/packages/source/v/virtualenv/virtualenv-13.1.2.tar.gz)
 Flask > VirtualEnv(3.5) > VirtualEnvPy3_5 >
 VirtualEnvDownload(13.1.2) > Extract(virtualenv-13.1.2.tar.gz) >
 Untar(virtualenv-13.1.2.tar.gz)
 Flask > VirtualEnv(3.5) > VirtualEnvPy3_5 > VirtualEnvDownload(13.1.2)
 Flask > VirtualEnv(3.5) > VirtualEnvPy3_5
 Flask > VirtualEnv(3.5) > Package(Flask==0.10.1)
====================== DEPLOYMENT FINISHED =======================

Note

Due to the work directory separation for each component you can easily
manage many different virtual environments with different packages and
different Python versions.

Managing Python environments with zc.buildout

If you manage your Python environment with zc.buildout, you can automate that
easily as well. Place your buildout.cfg next to your component.py and
use the following component:

components/flask/component.py (v2)

from batou.component import Component
from batou.lib.python import VirtualEnv, Package

class Flask(Component):

 def configure(self):
 venv = VirtualEnv('3.5')
 self += venv

 venv += Package('Flask', version='0.10.1')

components/flask/buildout.cfg

[buildout]
parts = flask
allow-picked-versions = false
versions = versions

[flask]
recipe = zc.recipe.egg
eggs = Flask

[versions]
zc.recipe.egg = 2.0.3
zc.buildout = 2.5.0
setuptools = 19.6.1
Flask = 0.10.1
itsdangerous = 0.24
Jinja2 = 2.8
Werkzeug = 0.11.3
MarkupSafe = 0.23

$./batou deploy local
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
=========================== Preparing ============================
main: Loading environment `local`...
main: Verifying repository ...
main: Loading secrets ...
===================== Configuring first host =====================
localhost: Connecting via local (1/1)
=================== Connecting remaining hosts ===================
=========================== Deploying ============================
localhost: Deploying component flask ...
 Flask > Buildout > File(work/flask/buildout.cfg) >
 Presence(work/flask/buildout.cfg)
 Flask > Buildout > File(work/flask/buildout.cfg) >
 Content(work/flask/buildout.cfg)
 Flask > Buildout > VirtualEnv(3.5) > VirtualEnvPy3_5
 Flask > Buildout > VirtualEnv(3.5) > Package(setuptools==19.6.1)
 Flask > Buildout > VirtualEnv(3.5) > Package(zc.buildout==2.5.0)
 Flask > Buildout
====================== DEPLOYMENT FINISHED =======================

Registering programs with supervisor

If you’re used to running your programs in supervisor, batou can help you with
a pre-made Supervisor component. You can simply enable it by importing it
into a component file and registering it with your environment:

components/supervisor/component.py

from batou.lib.supervisor import Supervisor

environments/local.cfg (v4)

[environment]
connect_method = local

[hosts]
localhost = tick, supervisor

To make your program run within supervisor, you register it by configuring
a program component:

components/myapp/component.py (v6)

from batou.component import Component, Attribute
from batou.lib.file import File
from batou.lib.supervisor import Program

class Tick(Component):

 sleep = Attribute(int, 1)

 def configure(self):
 self += File('tick.sh', mode="rwxr-xr-x")
 self += Program('tick', command='tick.sh')

Deploying it enables supervisor in its own virtualenv and starts the
registered program:

$./batou deploy local
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
=========================== Preparing ============================
main: Loading environment `local`...
main: Verifying repository ...
main: Loading secrets ...
===================== Configuring first host =====================
localhost: Connecting via local (1/1)
=================== Connecting remaining hosts ===================
=========================== Deploying ============================
localhost: Deploying component supervisor ...
 Supervisor > Buildout > File(work/supervisor/buildout.cfg) >
 Presence(work/supervisor/buildout.cfg)
 Supervisor > Buildout > File(work/supervisor/buildout.cfg) >
 Content(work/supervisor/buildout.cfg)
 Supervisor > Buildout > VirtualEnv(3.5) > VirtualEnvPy3_5
 Supervisor > Buildout > VirtualEnv(3.5) >
 Package(setuptools==19.2)
 Supervisor > Buildout > VirtualEnv(3.5) >
 Package(zc.buildout==2.5.0)
 Supervisor > Buildout
 Supervisor > Directory(work/supervisor/etc/supervisor.d)
 Supervisor > File(work/supervisor/etc/supervisord.conf) >
 Presence(work/supervisor/etc/supervisord.conf)
 Supervisor > File(work/supervisor/etc/supervisord.conf) >
 Content(work/supervisor/etc/supervisord.conf)
 Supervisor > Directory(work/supervisor/var/log)
 Supervisor > RunningSupervisor
localhost: Deploying component tick ...
 Tick > Program(tick) > File(work/supervisor/etc/supervisor.d/tick.conf)
 > Presence(work/supervisor/etc/supervisor.d/tick.conf)
 Tick > Program(tick) > File(work/supervisor/etc/supervisor.d/tick.conf)
 > Content(work/supervisor/etc/supervisor.d/tick.conf)
 Tick > Program(tick)
====================== DEPLOYMENT FINISHED =======================
$./work/supervisor/bin/supervisorctl
tick RUNNING pid 30992, uptime 0:01:37
supervisor> ^D

Working with network addresses

Network addresses in batou typically appear in various config files:
for clients to find their servers and for servers to configure their bind
addresses.

A good practice is to use hostnames when configuring a client, so the IP of
the server can be dynamically resolved when connecting. For servers, bind
addresses should be configured with IPs because resolvers may not be
reachable at the time the server is started and the server may not start
reliably under that condition.

batou has a utility object Address that can be used for doing DNS lookups
depending on what you’re doing:

>>> from batou.utils import Address
>>> address = Address('localhost', 8080)
>>> str(address.listen)
'127.0.0.1:8080'
>>> str(address.connect)
'localhost:8080'

You can also use the Address type for converting overrides automatically:

from batou.component import Component, Attribute
from batou.utils import Address

class MyApp(Component):

 address = Attribute(Address, 'localhost:8080')

To have services talk to each other on different machines, you can use the
host attribute of a component to get the name of the host that the
component is configured on. Specifically we recommend using host.fqdn,
which can be used with the built-in Jinja2 templating:

from batou.component import Component, Attribute
from batou.utils import Address

class MyApp(Component):

 address = Attribute(Address, '{{host.fqdn}}:8080')

 # address is now environment- and host-specific, e.g.:
 # address == Address('test01.fcio.net', 8080)

To override this attribute in an environment configuration you simply do
a regular override using templating:

[component:myapp]
address = {{host.fqdn}}:9000

or static addresses:

[component:myapp]
address = 192.168.0.1:8080

Registering and discovering services

If you deploy your application on multiple hosts, you need to communicate
between components what is configured where and how often. For example,
to configure a load balancer, you need to see where the application servers
are installed.

batou provides an API that allows a component to provide a resource
and other components to require a resource. This API has the following
features:

	handling scalars (single values) and list-oriented resources

	filtering for resources by key and by host

	warning if provided resources are never used

	warning if required resources are never provided

	warning if multiple resources are provided where exactly one is expected

Additionally, batou orders components based on their resource requirements:
a component that provides a resource will be deployed before the component
requiring it. This has component granularity, so batou may switch deploying
components between hosts if that is what the dependencies require.

To provide a resource, you call provide with a key (that you can define
as you like.)

from batou.component import Component, Attribute
from batou.utils import Address

class MyApp(Component):

 address = Attribute(Address, '{{host.fqdn}}:8080')

 def configure(self):
 self.provide('application', self.address)

If you call provide from multiple components, then batou will automatically
maintain a list of those items.

To get the registered resources for a key, you call require with the
key you are interested in:

from batou.component import Component
from batou.lib.file import File

class Loadbalancer(Component):

 def configure(self):
 application_servers = self.require('application')

 self += File('loadbalancer', content='''\
{% for server in component.application_servers %}
server connect={{server.connect}}
{% endfor %}
''')

To filter for resources from the same host as your component and you
expect a single value, you can do this:

from batou.component import Component

class Nginx(Component):

 def configure(self):
 varnish = self.require_one('varnish', host=self.host)

Note

You can pick keys as you like, but if you re-used standard components
then you may need to consider collisions.

Checking a deployment configuration before running it

If you are ready to deploy something but want to wait until a certain point in
time, then you can use -c (aka --consistency-only) with the deployment
to see whether the configuration for the target environment is consistent
without performing any action. This lets you debug your deployments early in
the release cycle:

$./batou deploy -c production
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
=========================== Preparing ============================
main: Loading environment `production`...
main: Verifying repository ...
main: Loading secrets ...
===================== Configuring first host =====================
test01: Connecting via ssh (1/1)
========================= CHECK FINISHED =========================

If the check fails you get the error message that you would otherwise have
gotten when running the deployment for real:

$./batou deploy -c production
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
=========================== Preparing ============================
main: Loading environment `production`...
main: Verifying repository ...
main: Loading secrets ...
===================== Configuring first host =====================
test01: Connecting via ssh (1/1)
ERROR: Overrides for undefined attributes
 Host: test01
 Component: Tick
 Attributes: foobar
ERROR: Unused provided resources
 supervisor: [<Supervisor (test01) "Supervisor">]
ERROR: 1 remaining unconfigured component(s)
================ 3 ERRORS - CONFIGURATION FAILED =================
========================== CHECK FAILED ==========================

Predicting the changes a deployment will cause

In addition to performing a consistency check, you can also perform a
prediction which changes would during a deployment. This is more expensive than
a pure consistency check, because it connects to all hosts and runs all
verify() commands. However, it gives you a rough estimate of the changes
that would happen.

$./batou deploy tutorial -P
batou/2.0b13.dev0 (cpython 3.7.5-final0, Darwin 19.5.0 x86_64)
============================ Preparing ============================
main: Loading environment `tutorial`...
main: Verifying repository ...
main: Loading secrets ...
====================== Configuring first host =====================
localhost: Connecting via local (1/1)
==================== Connecting remaining hosts ===================
================== Predicting deployment actions ==================
localhost: Deploying component tick ...
 Tick > File(work/tick/tick.sh) > Content(work/tick/tick.sh)
localhost: Deploying component supervisor ...
 Supervisor
================== DEPLOYMENT PREDICTION FINISHED =================

The prediction assumes that an exception during verify() indicates
that a previous component that had changes would have performed an
action that would trigger the component with a failing verification to
perform an update. Under very specific conditions this could also be
a real error when deploying, but in most cases this is not true.

batou can not predict all possible changes, especially if you depend on
timestamps of files on the disk that are updated due to performing an
action (which doesn’t happen when predicting).

Remember, the prediction is intended to give you a rough estimate in which top-
level components you can expect changes. There should always be an indicator
for some change if a component is affected. After that you can consider the
implications, e.g. to determine when would be a good time to run the deployment
if you expect downtime.

Updating batou in an existing project

You can update batou to a specific version for your project with a single
command:

$./batou update --version 1.2
Updating batou to 1.2
See the changelog at https://batou.readthedocs.io/en/latest/changes.html

$ git add batou
$ git commit -m 'Update batou to 1.2'

Now, check in the changed batou file and all your colleagues will
get the new batou version automatically the next time the pull and run
batou.

Advanced Usage

Writing a custom component (TODO)

Debugging batou runs

Using a debugger

batou comes with remote-pdb [https://pypi.org/project/remote-pdb/]
pre-installed. When running on Python 3.7+ 1 you can use breakpoint() to
drop into the debugger. You need telnet or netcat to connect to the
hostname and port displayed.

If you are using the default configuration, call:

$ nc -C 127.0.0.1 4444
or
$ telnet 127.0.0.1 4444

If you are debugging a remote deployment you should create a port forward
beforehand like this:

$ ssh -L 4444:localhost:4444 my.remote.host.dev

You are able to configure hostname and port. For details see the documentation
of remote-pdb [https://pypi.org/project/remote-pdb/]. This works both for
local and remote deployments. The environment variables for host and port are
propagated to the remote host.

Example shell session for debugging using a custom port:

$ REMOTE_PDB_PORT=4445 ./batou deploy dev
batou/2.3b2.dev0 (cpython 3.6.15-final0, Darwin 20.6.0 x86_64)
============================= Preparing ============================
main: Loading environment `dev`...
main: Verifying repository ...
main: Loading secrets ...
============================= Connecting ... =======================
localhost: Connecting via local (1/1)
============================= Configuring model ... ================
RemotePdb session open at 127.0.0.1:4445, waiting for connection ...

Example for a second terminal where the opened port gets connected to:

$ nc -C 127.0.0.1 4445
> /.../components/supervisor/component.py(32)configure()
-> if self.host.platform in ('gocept.net', 'fcio.net'):
(Pdb)

Using “print debugging”

	Inside a component you can use self.log("output") to print to the
console.

	You can call batou with the -d flag to enable debugging output during
the deployment run.

Using 3rd party libraries within batou

Sometimes, when writing custom components, you may need additional Python
packages, for example to configure databases by connecting directly to their
SQL interface instead of using their command line clients.

You can use additional Python packages by adding a requirements.txt file to your batou project repository:

$ tree
.
├── batou
├── components
│ └── myapp
│ └── component.py
├── environments
│ └── local
│ └── environment.cfg
└── requirements.txt

requirements.txt

sqlalchemy

The next time when you call batou the dependencies will be automatically
updated. When deploying then the requirements will also be installed
on the remote hosts.

$./batou
Installing sqlalchemy
usage: batou [-h] [-d] {deploy,secrets,init,update} ...

Note

batou already provides a number of packages that it depends on.
If you create contradicting requirements then this may lead to batou
failing. You will see pip complaining in that case.

Multiple components in a single component.py (TODO)

Skipping individual hosts or components when deploying (TODO)

Events (TODO)

Using bundle transfers if the repository server is not reachable from your remote server (TODO)

Timeout (TODO)

VFS mapping for development (TODO)

VFS mapping with explicit rewrite rules (TODO)

Extended service discovery options (TODO)

Platform-specific components

New in version 1.4.

Platform-specific components allow to customize behavior depending on the system or “platform” the target system runs as. Examples:

	Production system on Gentoo, local development on Ubuntu, or

	All VMs on Ubuntu but Oracle is being run with RedHat.

To define a platform specific aspects, you use the platform class decorator. Example:

import batou.component
import batou.lib.file

class Test(batou.component.Component):

 def configure(self):
 self += batou.lib.file.File('base-component')

@batou.component.platform('nixos', Test)
class TestNixos(batou.component.Component):

 def configure(self):
 self += batou.lib.file.File('i-am-nixos')

@batou.component.platform('ubuntu', Test)
class TestUbuntu(batou.component.Component):

 def configure(self):
 self += batou.lib.file.File('i-am-ubuntu')

The platform is then defined in the environment:

[environment]
platform = default-platform

[host:nixos]
Host specifc override:
platform = nixos
components = test

[host:ubuntu]
Host specifc override:
platform = ubuntu
components = test

Host-specific data

New in version 1.5.

Host-specific data allows to set environment dependent data for a certain host. It looks like this in an environment configuration:

[host:myhost00]
components = test
data-alias = nice-alias.for.my.host.example.com

In a component you can access all data attributes via the host’s data dictionary:

def configure(self):
 alias = self.host.data['alias']

The data- prefix was chosen in resemblance of the HTML standard [http://w3c.github.io/html/dom.html#dom-htmlelement-dataset].

DNS overrides

New in version 1.6

When migrating services automatic DNS lookup of IP addresses to listen on can be cumbersome. You want to deploy the service before the DNS changes become active. This is where DNS overrides can help.

The DNS overrides short circuit the resolving completely for the given host names.

Example:

[environment]
...

[resolver]
www.example.com =
 3.2.1.4
 ::2

Whenever batou configuration (i.e. batou.utils.Address) looks up www.example.com it will result in the addresses 3.2.1.4 and ::2.

The overrides support IPv4 and IPv6. You should only set one IP address per type for each host name.

Note

You cannot override the addresses of the configured hosts. The SSH connection will always use genuine name resolving.

context manager (TODO)

last_updated (TODO)

prepare, |=, component._ (TODO)

workdir overriding (TODO)

Importing components from a different component.py

The component configuration in the ./components folder is not a Python
package: it has no __init__.py and should not have one. That’s why is not
possible import a component into another one:

This will not work
from components.nginx.component import MyAddress

In some rare circumstances it might be necessary to have this kind of import.
There are two options:

	Import from batou.c.

	Create an extension module which can be imported.

Import from batou.c

There is a special module batou.c which is dynamically populated with all
the classes in all component.py files.

Given the following tree:

$ tree
.
├── batou
├── components
│ └── myapp
│ └── component.py
│ └── myconfig
│ └── component.py
├── environments
│ └── local
│ └── environment.cfg
├── requirements.lock
└── requirements.txt

If myconfig/component.py looks like this:

from batou.component import Component

class MyAddress(Component):
 """Some custom address."""

 ipv4 = "0.0.0.0"

myapp/component.py could import MyAddress like this:

from batou.component import Component
import batou.c

class MyApp(Component):
 """Some custom address."""

 def configure(self):
 """Configure MyApp."""
 self.address = batou.c.myconfig.MyAddress(ipv4="127.0.0.1")
 self += self.address
 self.ip = self.address.ipv4

This way, importing is only possible and reasonable inside methods of the
component, which are executed after initial configuration such as configure
(). It cannot be used to create an attribute on a class or import a base
class for the current component file.

Caution

The components are loaded alphabetically, which can be an issue for the
import.

Create an extension module

Another option to share code between different component files is to create a
custom extension module. This can either be a separate repository like
batou_ext [https://github.com/flyingcircusio/batou_ext] or batou_scm [https://github.com/gocept/batou_scm] but for a light weight start it can be
included in the deployment repository. Have a look at the setup.py and
other files for inspiration.

$ tree
.
├── batou
├── batou_myapp
│ ├── setup.py
│ └── src
│ └── batou_myapp
│ └── utils.py
├── components
│ └── myapp
│ └── component.py
├── environments
│ └── local
│ └── environment.cfg
├── requirements.lock
└── requirements.txt

batou_myapp/src/batou_myapp/utils.py
from batou.component import Component

class MyAddress(Component):
 """Some custom address."""

 ipv4 = "0.0.0.0"

class MyAppBase(Component):
 """Base component for all apps."""

myapp/component.py
from batou.component import Component
from batou_myapp.utils import MyAppBase
from batou_myapp.utils import MyAddress

class MyApp(MyAppBase):
 """Some custom address."""

 address = MyAddress(ipv4="127.0.0.1")

 def configure(self):
 """Configure MyApp."""
 self.ip = self.address.ipv4

The requirements.txt has to be adapted to include the new extension module
as requirement to be installed directly from source.

requirements.txt
batou==2.3b2
-e ./batou_myapp

	1

	On Python 3.6 you have to use from remote_pdb import set_trace; set_trace().

Command Line Usage

General options

usage: batou [-h] [-d] {deploy,secrets,init} ...

batou v2.0b12: multi-(host|component|environment|version|platform) deployment

positional arguments:
 {deploy,secrets,init}
 deploy Deploy an environment.
 secrets Manage encrypted secret files. Relies on gpg being
 installed and configured correctly.

optional arguments:
 -h, --help show this help message and exit
 -d, --debug Enable debug mode. (default: False)

batou deploy

usage: batou deploy [-h] [-p PLATFORM] [-t TIMEOUT] [-D] [-c] [-P] [-j JOBS]
 environment

positional arguments:
 environment Environment to deploy.

optional arguments:
 -h, --help show this help message and exit
 -p PLATFORM, --platform PLATFORM
 Alternative platform to choose. Empty for no platform.
 -t TIMEOUT, --timeout TIMEOUT
 Override the environment's timeout setting
 -D, --dirty Allow deploying with dirty working copy or outgoing
 changes.
 -c, --consistency-only
 Only perform a deployment model and environment
 consistency check. Only connects to a single host.
 Does not touch anything.
 -P, --predict-only Only predict what updates would happen. Do not change
 anything.
 -j JOBS, --jobs JOBS Defines number of jobs running parallel to deploy. The
 default results in a serial deployment of components.
 Will override the environment settings for operational
 flexibility.

batou secrets edit

usage: batou secrets edit [-h] [--editor EDITOR] environment

positional arguments:
 environment Environment to edit secrets for.

optional arguments:
 -h, --help show this help message and exit
 --editor EDITOR, -e EDITOR
 Invoke EDITOR to edit (default: $EDITOR or vi)

batou secrets summary

Show an overview of which users have access to what encrypted secrets.

usage: batou secrets summary [-h]

optional arguments:
 -h, --help show this help message and exit

Example:

$./batou secrets summary

production
 members
 - alice@example.com
 secret files
 - secrets.yaml

tutorial
 members
 - alice@example.com
 - bob@example.com
 secret files
 (none)

batou secrets add

usage: batou secrets add [-h] [--environments ENVIRONMENTS] keyid

positional arguments:
 keyid The user's key ID or email address

optional arguments:
 -h, --help show this help message and exit
 --environments ENVIRONMENTS
 The environments to update. Update all if not
 specified.

batou secrets remove

usage: batou secrets remove [-h] [--environments ENVIRONMENTS] keyid

positional arguments:
 keyid The user's key ID or email address

optional arguments:
 -h, --help show this help message and exit
 --environments ENVIRONMENTS
 The environments to update. Update all if not
 specified.

Managing files and directories

Files and Templates

The File component has been developed with Puppet [http://docs.puppetlabs.com/puppet/]’s file type in mind. It
accepts a very similar parameter set and has almost identical features.

You can use it to manage files, directories, and symlinks, and you can specify
content (literally or as Jinja templates). You can also manage the Unix
attributes and control whether leading directories should be managed or not.

The most basic usage is simply:

self += File('myfile')

This example creates a file at work/mycomponent/myfile, taking the contents
from a file of the same name in the component’s directory (i.e.
components/mycomponent/myfile). By default, the source file is run through
Jinja, with the file’s parent component made available as component.

	
class batou.lib.file.File(path)

	

Creates a file. The main parameter for File is the target path. A File instance has an attribute path containing the full, absolute path to the resulting file.

File accepts the following additional parameters:

	
source

	Filename of the source file to be used as the File’s content
(absolute path or relative to the component’s directory).
[Default: same as target path]

	
content

	Literal file contents as a string.

	
is_template

	Process file contents as Jinja template. [Default: True]

	
template_context

	Object to make available as component to the Jinja template.
[Default: File’s parent component]

	
template_args

	Dict of additional arguments to make available to the Jinja template.

	
encoding

	Encoding for the file contents [Default: utf-8]

	
owner

	Unix owner username.

	
group

	Unix group name.

	
mode

	Unix permission mode. Can be given as an integer value (0o755) or as an octal integer string (‘755’) or as a unix mode string similar to the output of ls -l (‘rwx–x–x’).

	
leading

	Create leading directories that were given in the target path.
[Default: False]

	
ensure

	Type of object to be created: ‘file’, ‘directory’, or ‘symlink’.
This is useful for complex situations (e.g. creating a symlink with
special ownership), for simple situations it’s probably more readable
to use Directory or Symlink.

	
link_to

	Source of symlink (for ensure = ‘symlink’)

	
sensitive_data

	Mark a file as sensitive so its content is not exposed by the
(diff-)output of batou. This is useful in situations where the
rendered file contains a password or other sensitive data.
[Default: False]

	
class batou.lib.file.BinaryFile(path)

	

Subclass of batou.lib.file.File. Creates a non-template binary file.

Directories

	
class batou.lib.file.Directory(path)

	Creates a directory. The main parameter is the target path.

	
source

	Path to a source directory whose contents are to be synchronized to the
target path (uses rsync internally).

	
exclude

	List of file names or patterns that should not be synchronized to the
target path (passed to rsync as --exclude argument, see the rsync
documentation [https://www.samba.org/ftp/rsync/rsync.html] for details).

	
class Symlink(target, source)

	Creates a symlink at target by linking to source.

Removing files

Removal of obsolete things is a difficult topic in the convergence paradigm. If
in the past we created a file foo, but now it is not used anymore, the code
that originally said, “please manage foo”, will not be there anymore. This
means that nobody knows that the file foo that is still lying around on the
production system is not actually in use anymore. In most cases, a few stray
files do not matter, but in case they do, the deployment code has to explicitly
state that something should not be present anymore.

	
class batou.lib.file.Purge(pattern)

	Ensures that a set of files (given as a glob pattern) does not exist.

Extracting archive files

batou can extract archive files in Tar, Zip, and DMG (on OSX target machines)
format:

	
class batou.lib.archive.Extract(archive)

	

The main parameter is the archive filename (relative to the component’s
directory). The archive format is determined according to the file name
extension (‘.tar’, ‘.tar.gz’, ‘.tgz’, ‘.tar.bz2’, ‘.tar.xz’ use tar,
‘.zip’ uses unzip and ‘.dmg’ uses hdiutil). The following additional
parameters are supported:

	
target

	Target directory to extract the archive into. Directory is created if
it does not exist (compare create_target_dir).
[Default: base name of the archive file]

	
create_target_dir

	Extract into the directory given in target. Set to False to
extract directly into the work directory.
[Default: True]

	
strip

	Only for tar archives: number of directories contained in the archive to
strip off (see the tar documentation [https://www.gnu.org/software/tar/manual/html_node/transform.html#SEC113] for details) [Default: 0]

VFS mapping (TODO)

XXX writeme

Downloads and VCS checkouts

Downloading files

batou supports downloading files via HTTP(S) or FTP, for example:

self += Download(
 'http://python.org/ftp/python/3.3.2/Python-3.3.2.tar.bz2',
 checksum='md5:7dffe775f3bea68a44f762a3490e5e28')

	
class batou.lib.download.Download(url)

	Download from the given URL (uses urllib or requests internally).

	
requests_kwargs

	Keyword arguments to pass to requests get method, e.g. to support
authentication.

	
checksum

	Checksum of the file to be verified (required). Must be given in the
format algorithm:value, where algorithm must be a function of the
hashlib [http://docs.python.org/2/library/hashlib.html] stdlib module.

	
target

	Filename to save the download as. [Default: last component of the URL]

Mercurial

self += Clone('https://bitbucket.org/gocept/batou', revision='tip')

	
class batou.lib.mercurial.Clone(url)

	Clone a Mercurial repository from the given URL.

	
revision

	Which revision to clone. At least one of revision or branch is
required. If both are given, revision will be used.

	
branch

	The name of a branch to clone. At least one of revision or branch
is required. If both are given, branch will be overridden by
revision. A clone of a named branch will be updated to the most recent
upstream revision of the branch whenever batou is run.

	
target

	Path to clone into (Default: workdir of parent component)

	
vcs_update

	Whether to update the clone with incoming changesets (Default: True).
Leaving clones of source code unchanged is often desirable during
development.

Git

self += Clone('https://github.com/Pylons/pyramid', revision='HEAD')

	
class batou.lib.git.Clone(url)

	Clone a Git repository from the given URL.

	
target

	Path to clone into (Default: workdir of parent component)

	
update_unpinned

	Update the clone on each batou run. If False, the repository is cloned once
and then never updated again. [Default: False]

Note

git.Clone does not support specifying a revision yet.

Subversion

self += Checkout('https://svn.zope.org/repos/main/zopetoolkit/trunk', revision='130345')

	
class batou.lib.svn.Checkout(url)

	Check out a Subversion repository from the given URL.

	
revision

	Which revision to check out (required)

	
target

	Path to clone into (Default: workdir of parent component)

Building software

batou has some support for downloading and compiling software packages, aka the
configure-make-make install (CMMI) dance. Example usage:

self += Build(
 'http://python.org/ftp/python/3.3.2/Python-3.3.2.tar.bz2',
 checksum='md5:7dffe775f3bea68a44f762a3490e5e28',
 configure_args='--with-libs=-lssl')

	
class batou.lib.cmmi.Build(url)

	Download archive from url, extract it and run CMMI on it.

	
checksum

	
Checksum for download (see batou.lib.download.Download.checksum
for details)

	
prefix

	Path to use as prefix for the installation (passed to configure
--prefix) [Default: workdir of parent component]

	
configure_args

	String of additional arguments to pass to configure.

	
build_environment

	Dict of variables to add to the environment during all CMMI invocations.

Managing python installations

virtualenv

The basic building block for Python-based components is creation of virtualenvs
(to separate package installations from each other):

self += VirtualEnv('2.7')

	
class batou.lib.python.VirtualEnv(version)

	Creates a virtualenv for the given Python version in the working directory
of the parent component. (Requires that pythonX.Y is in the PATH)

	
executable

	Full path to the Python executable to create the virtualenv for (default: pythonX.Y based on the version attribute).

batou downloads a compatible version of virtualenv [http://virtualenv.org/] (depending on the Python
version you need) to ensure everything works as expected and to avoid problems
with incompatibilities or unexpected behaviours of whatever version might be
installed already on the system. (virtualenv base installations are shared by
all components for creating new virtualenvs, it is installed to
work/.virtualenv).

Installing packages

Python packages are installed from a package index such as PyPI [https://pypi.python.org/]. batou uses
pip [http://www.pip-installer.org/] or easy_install for this purpose (but that actually is an implementation detail and depends on the specifics of the Python and virtualenv version).

Packages must be added to a virtual environment.

venv = VirtualEnv('2.7')
self += venv
venv += Package('Sphinx', version='1.1.3')

	
class batou.lib.python.Package(package)

	Install the Python package with the given name into the virtualenv of the
parent component. Using Package requires that it is
added to a VirtualEnv instance.

	
version

	The version of the package to install (required).

	
install_options

	List of options that are passed to pip/easy_install on the command line.

[Default: depends on the Python/virtualenv version in use]

	
check_package_is_module

	Verify that the package is installed by trying to import it (more
precisely, the first component of its dotted name). This is a stopgap
against https://github.com/pypa/pip/issues/3, but should be pretty safe to
disable if it causes trouble for specific packages (distribute is a
notable example, since it installs a Python module named setuptools).

[Default: True]

	
timeout

	A timeout (in seconds) that the installer should use to limit stalling
network activity.

Only works when using pip.

[Default: equal to the environment’s timeout setting]

	
dependencies

	Whether only the package itself or its dependencies should be installed.

[Default: True]

zc.buildout

batou has in-depth support for managing installations that use buildout. It
automatically wraps them in a virtualenv, installs the appropriate buildout
version, and takes care of running buildout whenever changes to configuration
files makes it necessary. A typical usage example:

self += Buildout(python='3.7', version='2.2', setuptools='1.0',
 pip='21.1',
 additional_config=[Directory('profiles', source='profiles')])

	
class batou.lib.buildout.Buildout

	Manage a buildout installation

	
python

	Python version (required)

	
executable

	Full path to the python executable to create the virtualenv for (used
instead of pythonX.Y).

	
version

	Version of zc.buildout to install (required)

	
setuptools

	Version of setuptools to install into the virtualenv (must be appropriate
to the buildout version, e.g. since 2.2 buildout requires setuptools, but
some versions before that required distribute) (required)

	
pip

	Version of pip to install into the virtualenv (must be appropriate
to the buildout version).

	
distribute

	Version of distribute to install into the virtualenv. Mutually exclusive
with setuptools, of course.

	
config

	If a different configuration file name than buildout.cfg should be used,
pass in a File or Component instance.

	
additional_config

	Optional list of component instances (e.g. File
or Directory) that contain further configuration
files (so Buildout knows when running
buildout is needed).

Managing services

Aside from using batou’s general purpose functions for creating files and running commands we have a few ready-to-use abilities for higher level service management.

Supervisor (TODO)

Our built-in supervisor component allows you to run a supervisor process within your service user and has a simple API for declaring components that want to integrate with the supervisor config.

The supervisor itself will be integrated into the system’s startup automatically, depending on your platform.

SystemD

Note

SystemD is a non-core component provided through the batou_ext package.

Alternatively to using Supervisor you can register each program as a system-wide service managed by SystemD. You can also specify custom configuration in addition to (or overriding) the defaults:

from batou.component import Component
from batou.lib.file import File
from batou.lib.service import Service
import batou_ext.nix

class Tick(Component):

 def configure(self):
 self += File('tick.sh', mode="rwxr-xr-x")

 self += Service('tick.sh',
 systemd=dict(Type='simple',
 Unit_After='cron.service memcached.service',
 Service_RestartSec=11))

You should import the batou_ext.nix module to register the Platform specific Service component.

This will result in the following unit file:

/etc/local/systemd/tick.service

 [Service]
 Environment="LOCALE_ARCHIVE=/run/current-system/sw/lib/locale/locale-archive"
 Environment=PATH=/home/ctheune/bin:/var/setuid-wrappers:/home/ctheune/.nix-profile/bin:/home/ctheune/.nix-profile/sbin:/home/ctheune/.nix-profile/lib/kde4/libexec:/nix/var/nix/profiles/default/bin:/nix/var/nix/profiles/default/sbin:/nix/var/nix/profiles/default/lib/kde4/libexec:/run/current-system/sw/bin:/run/current-system/sw/sbin:/run/current-system/sw/lib/kde4/libexec
 Environment="TZDIR=/etc/zoneinfo"
 ExecStart=/home/ctheune/deployment/work/tick/foobar.sh start
 Group=service
 LimitNOFILE=64000
 LimitNPROC=64173
 LimitSIGPENDING=64173
 RestartSec=11
 Type=simple
 User=ctheune
 Restart=always

 [Unit]
 After=cron.service memcached.service

If you want to leverage SystemD’s ability to repeat a
key in the configuration (like using multiple ExecStart statements) then you can simply pass that key as a list. This will be automatically expanded into multiple lines:

systemd=dict(Type='simple',
 ExecStart=['command1', 'command2'])

[Service]
...
ExecStart=/home/ctheune/deployment/work/tick/command1
ExecStart=/home/ctheune/deployment/work/tick/command2
...

Note

The SystemD support is currently geared towards the NixOS-based environment provided by us on our Flying Circus platform. We’re happy to extend and generalise this module upon request.

Component Python API

This part of the documentation covers all the interfaces of batou you
can use to develop your deployments.

Component

	
class batou.component.Component(namevar=None, **kw)

	A component that models configuration and can apply it.

Use sub-classes of Component to create custom
components.

The constructor takes one un-named argument which is
assigned to the attribute set by the namevar class
attribute.

The remaining keyword arguments are set as object
attributes.

If a component is used as a sub-component (via +=), then
the constructor arguments sets the object attributes. If a
component is used directly from an environment
(becoming a root component) then the constructor is
called without arguments and overrides from the
environment and the secrets are set through an
internal mechanism.

	
namevar = None

	The namevar attribute specifies the attribute
name of the first unnamed argument passed to the
constructor.

This helps making components more readable by providing
one “natural” first argument:

class File(Component):

 namevar = 'filename'

 def configure(self):
 assert self.filename

class Something(Component):

 def configure(self):
 self += File('nginx.conf')

	
workdir = None

	(readonly) The workdir attribute is set by batou when a component
before a component is configured and defaults to
<root>/work/<componentname>. Built-in components treat all relative
destination paths as relative to the work directory.

During verify() and apply() batou automatically switches the current
working directory to this.

	
property defdir

	
	(readonly) The definition directory
	(where the component.py lives).

Built-in components treat all path names of source files as relative
to the definition directory.

	
property host

	(readonly) The Host object this component is
configured for.

	
property environment

	(readonly) The Environment object this component is
configured for.

	
property root

	(readonly) The RootComponent object this component is
configured for.

	
configure()

	Configure the component by computing target state and declaring
sub-components.

This is the “declarative” part of batou – consider a rather functional
approach to implementing this.

Perform as much preparatory computation of target state as possible
so that batou can perform as many checks as possible before starting
to modify target systems.

Sub-components are added to this component by using the += syntax:

class MyComponent(Component):

 def configure(self):
 self += File('asdf')
 self += File('bsdf')
 self += File('csdf')

The order that sub-components will be worked on is given by the order
of the += assignments.

Warning

configure must not change state on the target systems and
should only interact with the outside system in certain situations.
It is not guaranteed whether this method will be called on the host
running the master command, or on any number of the target systems.

configure can be called by batou multiple times (with
re-initialized attributes) for batou to automatically discover
correct order.

Consequently, it is wise to keep computational overhead low to
ensure fast deployments.

Warning

Using functions from :py:module:random can cause your configuration
to be come non-convergent and thus cause unnecessary, repeated
updates. If you like to use a random number, make sure you seed
the random number generator with a predictable value, that may
be stored in the environment overrides or secrets.

	
verify()

	Verify whether this component has been deployed correctly or needs
to be updated.

Raise the batou.UpdateNeeded exception if the desired
target state is not reached. Use the assert_*() methods (see
below) to check for typical conditions and raise this exception
comfortably.

This method is run exactly once on the target system when batou
has entered the deployment phase. The working directory is
automatically switched to the workdir.

	
update()

	Update the deployment of this component.

update is called when verify has raised the
:py:class:UpdateNeeded exception.

When implementing update you can assume that the target state has
not been reached but you are not guaranteed to find a clean
environment. You need to take appropriate action to move whatever
state you find to the state you want.

We recommend two best practices to have your components be reliable,
convergent, and fast:

	Create a clean temporary state before applying new state. (But be
careful if you manage stateful things like database directories
or running processes.)

	If update and verify become too complicated then split
your component into smaller components that can implement
the verify/update cycle in a simpler fashion.

verify and update should usually not be longer than a
few lines of code.

	
last_updated()

	When this component was last updated, given as a timestamp (
seconds since epoch in local time on the system).

You can implement this, optionally, to help other components
that depend on this component to determine whether they should
update themselves or not.

	
__enter__()

	Enter the component’s context.

Components are context managers: the context is entered before
calling verify and left after calling update (or after
verify if no update was needed).

This can be used to perform potentially expensive or stateful
setup and teardown actions, like mounting volumes.

See Python’s context manager documentation if you want to know more
about this mechanism.

	
__exit__(type, value, tb)

	Exit the component’s context.

	
log(message, *args)

	Log a message to console during deployment.

The message is %-substituted with *args, if it is put out,
and prefixed with the hostname automatically.

Use this message to add additional status to the deployment output,
i.e. “Deploying Version X”.

Note

During configure() log messages are not put out immediately
but only after the configure phase is done, because configure()
is called multiple times. Only the logs of the last call are put
out.

In verify() and update() messages are put out immediately.

	
__add__(component)

	Add a new sub-component.

This will also automatically prepare the added component if it hasn’t
been prepared yet. Could have been prepared if it was configured in the
context of a different component.

	
__or__(component)

	Prepare a component in the context of this component but do not add
it to the sub components.

This allows executing ‘configure’ in the context of this component

	
provide(key, value)

	Provide a resource.

	Parameters

	
	key (str) – They key under which the resource is provided.

	value (object) – The value of the resource.

Resource values can be of any type. Typically you can pass around
component objects or individual configuration values, like network
addresses, or similar.

	
require(key, host=None, strict=True, reverse=False, dirty=False)

	Require a resource.

	Parameters

	
	key (str) – The key under which the resource was provided.

	host (object) – The host object that the provided resource belongs
to.

	strict (bool) – If true, then it is an error if no resources
were provided given the required key.

	reverse (bool) – By default a component that requires another one
also depends on the one that provides a resource. If reverse
is set to True then this dependency is reversed and the
component that provides a resource depends on the component
requiring it.

	dirty (bool) – When a component requires a resource then it will
normally be configured again when another component is configured
later that changes the list of resources that were required.

Under very special circumstances it may be necessary to not
get reconfigured when the required resource changes to break
cycles in dependencies. Use with highest caution as this
can cause your components to have incomplete configuration.

	Returns

	The matching list of resources that were provided.

	Return type

	list

Note

Calling require may cause an internal exception to be raised
that you must not catch: batou uses this as a signal that this
component’s configuration is incomplete and keeps track of the
desired resource key. If another component later provides this
resource then this component’s configure will be run again,
causing require to complete successfully.

	
require_one(key, host=None, strict=True, reverse=False, dirty=False)

	Require a resource, returning a scalar.

For the parameters, see require().

	Returns

	The matching resource that was provided.

	Return type

	object

This version returns a single value instead of a list. Also, if the
number of potential results is not exactly one, then an error will
be raised (which you should not catch). batou will notify you of this
as being an inconsistent configuration.

	
assert_cmd(*args, **kw)

	Assert that given command returns successfully, raise
UpdateNeeded otherwise.

For details about the command arguments and what a successful execution
means, see batou.component.Component.cmd().

	
assert_file_is_current(reference, requirements=[], **kw)

	Assert that the file given by the reference pathname has been
created or updated after the given list of requirement file names,
raise UpdateNeeded otherwise.

	Parameters

	
	reference (str) – The file path you want to check for being
current.

	requirements (list) – The list of filenames you want to check
against.

	kw (dict) – Arguments that are passed through to
last_update which can be used to use different time stamps
than st_mtime. See
batou.lib.file.File.last_updated() for possible values.

	Returns

	None, if reference is as new or newer as all
requirements.

	Raises

	UpdateNeeded – if the reference file is older than any of the
requirements.

	
assert_component_is_current(requirements=[], **kw)

	Assert that this component has been updated more recently
than the components specified in the requirements,
raise UpdateNeeded otherwise.

	Parameters

	
	requirements (list) – The list of components you want to
check against.

	kw (dict) – Arguments that are passed through to
each last_update call. The semantics depend on the components’
implementations.

	Returns

	None, if this component is as new or newer as all
requirements.

	Raises

	UpdateNeeded – if this component is older than any of the
requirements.

The age of a component is determined by calling last_updated
on this and each requirement component.

	
assert_no_subcomponent_changes()

	Assert that, during this run of batou, non of this
components’ sub-components have required an update.

	Returns

	None, if none if this components’
sub-components have required an update during this run of batou.

	Raises

	UpdateNeeded – if any of this components’ sub-components
have required an update during this run of batou.

Note

Using this change indicator can be unreliable if you fail to
perform your update correctly. It is likely that when later
resuming an aborted deployment this change won’t be triggered
again.

	
assert_no_changes()

	Assert that, during this run of batou, neither
this component nor any of its sub-components have required an update.

	Returns

	None, if neither this component nor any of its
sub-components have required an update during this run of batou.

	Raises

	UpdateNeeded – if this component or any of its sub-components
have required an update during this run of batou.

Note

Using this change indicator can be unreliable if you fail to
perform your update correctly. It is likely that when later
resuming an aborted deployment this change won’t be triggered
again.

	
cmd(cmd, silent=False, ignore_returncode=False, communicate=True, env=None, expand=True)

	Perform a (shell) command.

Use this to interact with the target system during verify,
update, __enter__, or __exit__.

Warning

Do not use this during configure.

	Parameters

	
	cmd (str) – The command you want to execute including all
arguments. This will be parsed by the system shell, so be
careful of quoting.

	silent (bool) – whether output should be shown in the case of
errors.

	ignore_returncode (bool) – If true, do not raise an exception
if the return code of the command indicates failure.

	communicate (bool) – If True, call communicate() and wait
for the process to finish, and process the return code. If
False start the process and return the Popen
object after starting the process. You are then responsible
for communicating, processing, and terminating the process
yourself.

	expand (bool) – Treat the cmd as a template and process it
through Jinja2 in the context of this component.

	env (dict) – Extends environment variables with given ones.

	Returns

	(stdout, stderr) if communicate is True,
otherwise the Popen process is returned.

	Raises

	CmdExecutionError – if return code indicated failure and
ignore_returncode was not set.

	
map(path)

	Perform a VFS mapping on the given path.

If the environment has VFS mapping configured, compute the new path
based on the mapping.

Whenever you get a path name from the outside (i.e. environment
overrides or from the constructor) or use absolute paths in your
configuration, you should call map as early as possible during
configure. If you are using :py:class:batou.component.Attribute
for constructor arguments or overrides, then you can specify map
on the attribute to avoid having to map this yourself.

You should rely on other components to do the same, so if you pass a
path to another component’s constructor, you do not have to call
map yourself.

	
touch(filename)

	Built-in equivalent of the touch UNIX command.

Use during verify, update, __enter__, or __exit__,
to interact with the target system.

Warning

Do not use during configure.

	
expand(string, component=None, **kw)

	Expand the given string in the context of this component.

When computing configuration data, you can perform inline
template expansions of strings. This is an alternative to Python’s
built-in string templates, to keep your inline configuration
in sync with the external file templating based on Jinja2.

	Parameters

	
	string (unicode) – The string you want to be expanded as a Jinja2
template.

	component (batou.component.Component) – By default this self.
To perform the template expansion in the context of another
component you can pass it through this argument (or call the
other component’s expand).

	kw (dict) – Additional keyword arguments are passed into the
template’s context as global names.

	Returns

	the expanded template.

	Return type

	unicode

	
template(filename, component=None)

	Expand the given file in the context of this component.

Instead of using the File component to expand templates, you
can expand a file and receive a unicode string (instead of directly
rendering the file to a target location).

	Parameters

	
	filename (str) – The file you want to expand. The filename is
not mapped by this function. Map the filename before calling
template if needed.

	component (batou.component.Component) – By default this self.
To perform the template expansion in the context of another
component you can pass it through this argument (or call the
other component’s expand).

	kw (dict) – Additional keyword arguments are passed into the
template’s context as global names.

	Returns

	the expanded template.

	Return type

	unicode

	
chdir(path)

	Change the working directory.

Use this to interact with the target system during verify,
update, __enter__, or __exit__.

Warning

Do not use this during configure.

The given path can be absolute or relative to the current
working directory. No mapping is performed.

This is a context mapper, so you can change the path temporarily
and automatically switch back:

def update(self):
 with self.chdir('/tmp'):
 self.touch('asdf')

	
class batou.component.HookComponent(namevar=None, **kw)

	A component that provides itself as a resource.

	
configure()

	Configure the component by computing target state and declaring
sub-components.

This is the “declarative” part of batou – consider a rather functional
approach to implementing this.

Perform as much preparatory computation of target state as possible
so that batou can perform as many checks as possible before starting
to modify target systems.

Sub-components are added to this component by using the += syntax:

class MyComponent(Component):

 def configure(self):
 self += File('asdf')
 self += File('bsdf')
 self += File('csdf')

The order that sub-components will be worked on is given by the order
of the += assignments.

Warning

configure must not change state on the target systems and
should only interact with the outside system in certain situations.
It is not guaranteed whether this method will be called on the host
running the master command, or on any number of the target systems.

configure can be called by batou multiple times (with
re-initialized attributes) for batou to automatically discover
correct order.

Consequently, it is wise to keep computational overhead low to
ensure fast deployments.

Warning

Using functions from :py:module:random can cause your configuration
to be come non-convergent and thus cause unnecessary, repeated
updates. If you like to use a random number, make sure you seed
the random number generator with a predictable value, that may
be stored in the environment overrides or secrets.

	
class batou.component.RootComponent(name, environment, host, features, ignore, factory, defdir, workdir, overrides=None)

	Wrapper to manage top-level components assigned to hosts in an
environment.

Root components have a name and determine the initial working directory
of the sub-components.

	
batou.component.platform(name, component)

	Class decorator to register a component class as a platform-component
for the given platform and component.

	
batou.component.handle_event(event, scope)

	

Attribute (TODO)

	
class batou.component.Attribute(conversion=<class 'str'>, default=<object object>, expand=True, map=False)

	An attribute descriptor is used to provide:

	declare overrideability for components

	provide type-conversion from overrides that are strings

	provide a default.

Conversion can be given as a string to indicate a built-in conversion:

literal - interprets the string as a Python literal
list - interpretes the string as a comma separated list

If conversion is a callable the callable will be used for the conversion,
when the value is read from config file. On a setattr the conversion is
not applied.

The obj is expected to be a Component so that ‘expand’ can be accessed.

	Parameters

	
	conversion (str, callable) – A conversion callable which takes one parameter or a
string for built-in conversion (literal or list). This function
is used for strings from config files.

	default – The default value for the Attribute. When a

ConfigString value is passed then it will expanded, mapped,
and passed through the conversion function, depending on the other
arguments.
:type default: None

	Parameters

	
	expand (bool) – Expand the config string in the context of this
component.

	map (bool) – Perform a VFS mapping on the config string.

	
from_config_string(obj, value)

	Perform expansion, mapping and conversion after another.

Host (TODO)

	
class batou.host.Host(name, environment, config={})

	

Environment (TODO)

	
class batou.environment.Environment(name, timeout=None, platform=None, basedir='.', provision_rebuild=False)

	An environment assigns components to hosts and provides
environment-specific configuration for components.

Environment configuration

Component assignment (TODO)

General parameters (TODO)

General environment parameters are set in the [environment] config section.
Example:

[environment]
service_user = website
host_domain = gocept.net
platform = gocept
branch = production

	service_user
	The deployment is run as this user on remote machines. If this is not
the same as the user connecting via ssh, a sudo to the service user
is performed.

	host_domain
	All hosts in the [hosts] section are postfixed with this domain. This
is handy do make the host/component assignment less verbose

	update_method
	hg-bundle|hg-pull|git-bundle|git-pull|rsync, sets how the remote deployment repository is updated.

	pull, the default, uses hg/git clone and/or hg/git pull on the remote site.

	bundle will copy the necessary changes as Mercurial/Git bundle, via the batou ssh link.

	rsync will rsync the working copy. This is most useful in combination with the vagrant platform.

	branch
	For remote deployments, use this and only this branch. batou will
complain if the local branch does not match the set branch in the
environment.

	platform
	Set the platform for this environment.

	timeout
	Set the ssh connection timeout in seconds.

	target_directory
	Absolute path of the directory on remote machines where the remote
deployment repository is stored. Supports tilde expansion. Default:
~/deployment.

vfs mapping (TODO)

Root-component attribute overrides (TODO)

Jinja2 templates (TODO)

Utilities

	
class batou.utils.Address(connect_address, port=None, require_v4=<object object>, require_v6=<object object>)

	An internet service address that can be listened and connected to.

The constructor address is expected to be the address that can be
connected to. The listen address will be computed automatically.

>>> x = Address('localhost', 80)
>>> str(x.connect)
'localhost:80'
>>> str(x.listen)
'127.0.0.1:80'

You can specify which IP versions are expected to be resolved for listen
addresses in three ways with the require_v4/require_v6 flags:

	False -> this version must not be used

	True -> this version must be resolved properly

	
	‘optional’ -> the listen/listen_v6 attribute will contain None if it does
	not resolve.

	
connect = None

	The connect address as it should be used when configuring clients.
This is a batou.utils.NetLoc object.

	
property listen

	The IPv4 listen (or bind) address as it should be used when
configuring servers. This is a batou.utils.NetLoc
object. It raises an batou.IPAddressConfigurationError
if used unconfigured.

	
property listen_v6

	The IPv6 listen (or bind) address as it should be used when
configuring servers. This is a batou.utils.NetLoc
object. It raises an batou.IPAddressConfigurationError
if used unconfigured.

	
class batou.utils.BagOfAttributes

	Provide a dict-like object that can also
be accessed using attributes.

It’s sometimes more convenient to write
a.x instead of a[‘x’]. However, namespaces may
require being able to also use non-Python-identifier
keys.

	
exception batou.utils.CmdExecutionError(cmd, returncode, stdout, stderr)

	

	
exception batou.utils.CycleError

	

	
class batou.utils.NetLoc(host, port=None)

	A network location specified by host and port.

Network locations can automatically render an appropriate string
representation:

>>> x = NetLoc('127.0.0.1')
>>> x.host
'127.0.0.1'
>>> x.port
None
>>> str(x)
'127.0.0.1'

>>> y = NetLoc('127.0.0.1', 80)
>>> str(y)
'127.0.0.1:80'

	
host = None

	The host part of this network location. Can be a hostname or IP address.

	
port = None

	The port of this network location. Can be None or an integer.

	
batou.utils.call_with_optional_args(func, **kw)

	Provide a way to perform backwards-compatible call,
passing only arguments that the function actually expects.

	
batou.utils.dict_merge(a, b)

	recursively merges dict’s. not just simple a[‘key’] = b[‘key’], if
both a and b have a key who’s value is a dict then dict_merge is called
on both values and the result stored in the returned dictionary.
https://www.xormedia.com/recursively-merge-dictionaries-in-python/

Exceptions

	
exception batou.ComponentLoadingError

	The specified component file failed to load.

	
exception batou.ConfigurationError

	Indicates that an environment could not be configured successfully.

	
exception batou.ConversionError

	An override attribute could not be converted properly.

	
exception batou.CycleErrorDetected

	We think we found a cycle in the component dependencies.

	
exception batou.DeploymentError

	Indicates that a deployment failed..

	
exception batou.DuplicateComponent

	

	
exception batou.DuplicateHostError

	

	
exception batou.DuplicateHostMapping

	

	
exception batou.DuplicateOverride

	An override for a component attribute was found both in the secrets and
in the environment configuration.

	
exception batou.FileLockedError

	A file is already locked and we do not want to block.

	
exception batou.GPGCallError

	There was an error calling GPG on encrypted file.

	
exception batou.IPAddressConfigurationError

	An IP address family was accessed but not configured.

	
exception batou.InvalidIPAddressError

	

	
exception batou.MissingComponent

	The specified environment does not exist.

	
exception batou.MissingEnvironment

	The specified environment does not exist.

	
exception batou.MissingOverrideAttributes

	

	
exception batou.NonConvergingWorkingSet

	A working set did not converge.

	
exception batou.ReportingException

	Exceptions that support user-readable reporting.

	
classmethod merge(selfs)

	Merge multiple instances of this exception.

	
should_merge(other)

	checks, wether two exceptions have the same type as well as data
and as such, should be merged into one exception.

	
exception batou.RepositoryDifferentError

	The repository on the remote side is different.

	
exception batou.SilentConfigurationError

	These are exceptions that will be reported by other exceptions.

They basically only influence control flow during configuration and
are manually placed to avoid double reporting.

	
exception batou.SuperfluousComponentSection

	A component section was found in the environment
but no associated component is known.

	
exception batou.SuperfluousSecretsSection

	A component section was found in the secrets
but no associated component is known.

	
exception batou.SuperfluousSection

	A superfluous section was found in the environment
configuration file.

	
exception batou.UnknownComponentConfigurationError

	An unknown error occured while configuring a component.

	
exception batou.UnsatisfiedResources

	Some required resources were never provided.

	
exception batou.UnusedResources

	Some provided resources were never used.

	
exception batou.UpdateNeeded

	A component requires an update.

Contributor’s guide

If you’re reading this you’re probably interested in contributing to batou.
First, we’d like to say: thank you! Open source projects live-and-die based on
the support they receive from others, and the fact that you’re even considering
supporting batou is very generous of you.

This document lays out guidelines and advice for contributing to batou. If
you’re thinking of contributing, start by reading this thoroughly and getting a
feel for how contributing to the project works. If you have any questions, feel
free to reach out to Christian Theune, the primary maintainer.

The guide is split into sections based on the type of contribution you’re
thinking of making, with a section that covers general guidelines for all
contributors.

All Contributions

Be Cordial

Be cordial or be on your way.

batou has adopted this very important rule from the
Requests library. This rule governs all forms of
contribution, including reporting bugs or requesting features. This golden
rule is be cordial or be on your way [http://kennethreitz.org/be-cordial-or-be-on-your-way/]. All contributions
are welcome, as long as everyone involved is treated with respect.

Get Early Feedback

If you are contributing, do not feel the need to sit on your contribution until
it is perfectly polished and complete. It helps everyone involved for you to
seek feedback as early as you possibly can. Submitting an early, unfinished
version of your contribution for feedback in no way prejudices your chances of
getting that contribution accepted, and can save you from putting a lot of work
into a contribution that is not suitable for the project.

Contribution Suitability

The project maintainer has the last word on whether or not a contribution is
suitable for batou. All contributions will be considered, but from time to
time contributions will be rejected because they do not suit the project.

If your contribution is rejected, don’t despair! So long as you followed these
guidelines, you’ll have a much better chance of getting your next contribution
accepted.

Code Contributions

When contributing code, you’ll want to follow this checklist:

	Fork the repository on
GitHub [https://github.com/flyingcircusio/batou].

	Run the tests to confirm they all pass on your system. If they don’t,
you’ll need to investigate why they fail. If you’re unable to diagnose
this yourself, raise it as a bug report by following the guidelines in
this document.

	Write tests that demonstrate your bug or feature. Ensure that they fail.
Make your change.

	Run the entire test suite again, confirming that all tests pass including
the ones you just added.

	Send a Pull Request to the main repository’s master branch. Pull Requests
are the expected method of code collaboration on this project.

The following sub-sections go into more detail on some of the points above.

Code Review

Contributions will not be merged until they’ve been code reviewed. You should
implement any code review feedback unless you strongly object to it. In the
event that you object to the code review feedback, you should make your case
clearly and calmly. If, after doing so, the feedback is judged to still apply,
you must either apply the feedback or withdraw your contribution.

New Contributors

If you are new or relatively new to Open Source, welcome! batou aims to be a
gentle introduction to the world of Open Source. If you’re concerned about how
best to contribute, please consider mailing a maintainer (listed above) and
asking for help.

Please also check the “Get Early Feedback” section.

Documentation Contributions

Documentation improvements are always welcome! The documentation files live in
the doc/ directory of the codebase. They’re written in reStructuredText,
and use Sphinx to generate the full suite of documentation.

When contributing documentation, please attempt to follow the style of the
documentation files. This means a soft-limit of 79 characters wide in your text
files and a semi-formal prose style.

Bug Reports

Bug reports are hugely important! Before you raise one, though, please check
through the bugtracker issues, both open and closed, to confirm that the bug
hasn’t been reported before. Duplicate bug reports are a huge drain on the time
of other contributors, and should be avoided as much as possible.

When reporting a bug, make sure to include the batou version and platform
identifier, e.g.:

$./batou
batou/2.3b2.dev0 (cpython 3.9.5-final0, Darwin 20.5.0 x86_64)
...

Also, include console output, relevant component code and maybe environment
configuration if reporting errors.

Feature Requests

batou is under development. We have a strong idea about our architecture,
though.

If you believe there is a feature missing, feel free to raise a feature
request, but please demonstrate the issue you want to solve instead of
only suggesting a certain function or feature. We want batou’s architecture
to remain as small and clean as possible and thus we’re heavily interested
in understanding the problem you are trying to solve.

Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age,
body size, disability, ethnicity, gender identity and expression, level of
experience, nationality, personal appearance, race, religion, or sexual
identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at mail@flyingcircus.io. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4,
available at http://contributor-covenant.org/version/1/4

Testing

Run the tests

	bin/tox

Changing the examples

The batou configurations in the examples/ directory use a custom GPG key.
To change the secrets files or to run the examples you have to set the
environment variable GNUPGHOME to point to
./src/batou/secrets/tests/fixture/gnupg. (But the path has to be absolute!)

Example:

$ cd examples/errors
$ GNUPGHOME=/home/user1/clones/batou/src/batou/secrets/tests/fixture/gnupg ./batou deploy errors

Adding new migration steps

	Migration steps are Python modules inside src/batou/migrate/migrations.

	The name of a new migration step must be an integer number (plus .py
extension) bigger than any existing one. The already existing ones suggest
that the first digit corresponds to batou’s major version and the second one
to the minor version, so migration steps for batou 2.3 should be named
23xx.py. Not each possible number has to be used.

	The highest migration version already applied to a batou project is stored in
.batou.json.

	./batou migrate runs all migration with a higher version number than the
one stored in .batou.json steps in ascending order.

	Each migration step has to provide a migrate function which takes one
positional argument.

	The migration steps’ migrate function is called with a callable as
argument which takes two arguments: title and text. The values there
given are rendered in the output to inform the user about changes done by the
migration step or changes which have to be applied manually. This function
can be called multiple times per migration step.

How to Help

batou is under active development, and contributions are more than welcome!

	Check for open issues or open a fresh issue to start a discussion around a bug.

	Fork the repository [https://bitbucket.org/flyingcircus/batou] on
Bitbucket and start making your changes to a new branch.

	Write a test which shows that the bug or feature works fine.

	Send a pull request and bug the maintainer until it gets merged and published. :)
Make sure to add yourself to AUTHORS.

Ideas

	A continuous deployment server would be nice. I started experimenting
with a new project that would be called “Aramaki”. Contact @theuni if
you are interested.

	Documentation improvements are always welcome. Especially if you’re missing
something or would like to understand things. We’ll be happy to explain
things in depth – a good deed would then be to improve our documentation.

	Switching from the Component base class to an explicit API to avoid
namespace collisions would be nice. The idea would be to create components
using a class decorator:

from batou import component

@component
class MyApp(object):

 def configure(self, b):
 self += File(...)

 def verify(self, b):
 b.assert_no_subcomponent_changes('touch asdf')

 def verify(self, b):
 b.cmd('rm -rf /')

b is an API object bound to the component that provides the
standard API. This way, you can use any names on your environment
without the hassle of potential namespace collisions.

	More pre-defined, reusable components are welcome. Check the
batou_ext [https://bitbucket.org/flyingcircus/batou_ext] repository.

	Supporting provisioning for platforms aside from Vagrant: e.g. Amazon,
Flying Circus, …

Development Dependencies

We use zc.buildout to manage the batou build environment:

$ virtualenv --python=python2.7
$ bin/pip install zc.buildout
$ bin/buildout

Run py.test to verify that everything works fine:

$ bin/py.test
================= test session starts ==================
platform darwin -- Python 2.7.10 -- py-1.4.26 -- pytest-2.6.4
plugins: cache, capturelog, codecheckers, cov, timeout
collected 426 items

src/batou/__init__.py ..
src/batou/_output.py ..
src/batou/agent.py ..
src/batou/bootstrap.py ..
src/batou/buildout.py ..
src/batou/c.py ..
src/batou/component.py ..
...

Runtime Environments

We will likely not accept patches that are related to Windows. We are open
to good arguments, though.

Downstream Repackaging

batou is not intended for downstream repackaging.

Authors

batou is written and maintained by Christian Theune and various contributors:

The Flying Circus Team

	Christian Theune (ct@flyingcircus.io)

	Christian Zagrodnick (cz@flyingcircus.io)

	Christian Kauhaus (kc@flyingcircus.io)

	Alexander Bittner (ab@flyingcircus.io)

	Frank Lanitz (fl@flyingcircus.io)

Patches and Suggestions

	Michael Howitz, gocept gmbh & co. kg

	Thomas Lotze, gocept gmbh & co. kg

	Steffen Allner, gocept gmbh & co. kg

	Sebastian Wehrmann, gocept gmbh & co. kg

	Wolfgang “wosc” Schnerring

	Gil Forcada Codinachs

	Stefan Walluhn

	Cillian de Roiste

	Florian Schulze

	Hervé Coatanhay

	Jan-Jaap Driessen

	Marius Gedminas

Changelog

2.3.1 (2023-05-22)

	Error when accessing Attribute without an override or default now show the name of the attribute being accessed in the error message
(#337)

	a formatting bug in the error message for batou.lib.file.File has been fixed
(#348)

2.3 (2023-01-24)

	No further changes.

2.3b6 (2022-12-09)

Features

	Allow mysql authentication via sudo.

Bugfixes

	Secrets files created without proper prefix #333

2.3b5 (2022-09-21)

Features

	Do not clobber git clones by default. Add new option clobber to allow
specifying that a git clone may clobber the target directory.
(#298 [https://github.com/flyingcircusio/batou/issues/298])

	Add checksum(value) method to Component to easily compute sha256
checksums. (#232 [https://github.com/flyingcircusio/batou/issues/232])

Improvements

	Clean up migrations and make the output easier to read.

	Output usage strings for subcommands, instead of just the main command.

	Revise the new Address require_v4/require_v6 to allow environment-based
customization that can be used to revert back to the old settings.
(#270 [https://github.com/flyingcircusio/batou/issues/270])

	Improve the error output by suppressing certain errors and grouping
them properly to indicate which hosts see which errors in the model.
(#272 [https://github.com/flyingcircusio/batou/issues/272])

Bug fixes

	Check python venvs for a functional pip and rebuild if necessary.

	Fix use of File for syncing directories.
(#270 [https://github.com/flyingcircusio/batou/issues/270])

	Fix incorrect handling of of missing Attribute defaults.
(#318 [https://github.com/flyingcircusio/batou/issues/318])

2.3b4 (2022-08-22)

Features

	Add a migration framework. Automatic migrations can now be called using
batou migrate.
(#185 [https://github.com/flyingcircusio/batou/issues/185])

	Allow to pin the pip version used in the Buildout component.
(#263 [https://github.com/flyingcircusio/batou/issues/263])

	Automatically migrate environments and secrets to the new structure using
./batou migrate.
(#185 [https://github.com/flyingcircusio/batou/issues/185])

	Support creating users in MySQL ≥8.
(#242 [https://github.com/flyingcircusio/batou/issues/242])

	Allow to check if an Address is configured for IPv4 resp. IPv6 using the
attributes require_v4 resp. require_v6.

	The behaviour to specify Attribute defaults as either Python native objects
or strings that will be expanded, mapped and converted has been changed again
to simplify the mechanics and make migration errors easier to understand.

2.3b3 (2021-11-30)

Action needed

	Require defaults to be explicitly declared for Attribute.
(#237 [https://github.com/flyingcircusio/batou/issues/237])

Bug fixes

	Ignore hostmap entries for hosts that have changed their dynamic hostname
settings to false.

Features

	Automatically pick up provision.sh and/or provision.nix.

You do not need to explicitly define a COPY command to copy the
provision.nix to the container, but if you do then we avoid doing it
twice.

	Warn if neither provision.nix nor provision.sh are given as that seems more
of an accident (like misspelling the filenames).

	Continue deployments on failure when running fc-manage during provisioning
but be more explicit about errors and warn the user that something maybe be
fishy in the deployment subsequently.

	Use different colors for success depending on whether you ran a real
deployment, a consistency check, or a predition.
(https://github.com/flyingcircusio/batou/issues/209)

2.3b2 (2021-10-05)

Action needed

	Fail if an attribute is set both in environment and via secrets.
(#28 [https://github.com/flyingcircusio/batou/issues/28])

	Avoid implicit conversion of Attribute defaults. In cases where the default
value should be converted, use default_conf_string. This may result in
some changes if your code relied on this implicit conversion. If you use
batou_ext, update to a current commit..
(#89 [https://github.com/flyingcircusio/batou/issues/89])

	Raise an error if an internet protocol family is used but not configured.
(#189 [https://github.com/flyingcircusio/batou/issues/189])

Bug fixes

	Fix Python 3 compatibility with some Mercurial-based batou repositories.

	Adapt bootstrap.sh to the use of appenv.

Features

	Integrate remote-pdb to debug batou runs.
(#199 [https://github.com/flyingcircusio/batou/issues/199])

	NetLoc objects are now comparable.
(#88 [https://github.com/flyingcircusio/batou/issues/88])

	Enhance file Mode objects to accept integers, octal mode strings
and ‘rwx’ strings as the mode argument. This allows homogenous use
in Python code and overrides through config files.
(#61 [https://github.com/flyingcircusio/batou/issues/61])

	Do not render diffs for files which contain contents of secrets/*.
(#91 [https://github.com/flyingcircusio/batou/issues/91])

	Assure that requirements.lock is build with the oldest supported Python
version to keep it consistent – newer Python versions have included some
packages in standard library which older ones need as dependencies.
(#145 [https://github.com/flyingcircusio/batou/issues/145])

	Remove default option for installation via pip.
(#212 [https://github.com/flyingcircusio/batou/issues/212])

	Implement dynamic, pluggable provisioning of hosts.

We provide a built-in plugin to support NixOS development containers
that feel similar to the Flying Circus VM platform.

Other changes

	Improve error message for DNS lookup semantics.

	Render a better error message if gpg failed to decrypt a secrets file.
(#123 [https://github.com/flyingcircusio/batou/issues/123])

	Raise exception when calling batou secrets add or batou secrets remove
with an unknown environment name.
(#143 [https://github.com/flyingcircusio/batou/issues/143])

	Render an error message if batou secrets summary fails during decryption.
(#165 [https://github.com/flyingcircusio/batou/issues/165])

	Do not write secrets files without recipient.
(#184 [https://github.com/flyingcircusio/batou/issues/184])

2.3b1 (2021-05-21)

	Drop support for Python 3.5. (#114)

	batou.lib.buildout: Enable support for Buildout 3 by allowing
to specify a wheel package version to install in the
virtualenv. (#148)

	Fix bootstrapping projects with the new appenv structure. Vendor
an appenv version to ensure lockstep compatibility.

	Fix consistency check semantics: we accidentally performed
actual deployments during consistency checks.

	Fix rsync repository mode to capture deleted top-level elements
in the source.

	Improve DNS lookup semantics.

We experienced two major problems with the current code:

	IPv6 lookups were done opportunistically and thus if DNS issues happened
during deployments we would suddenly drop IPv6 support instead of failing.

	There was no logging to find out why the code was making specific decisions
and to see what the underlying network APIs were returning. We now provide
detailed debug logs for analyzing DNS issues.

There were slight adjustments in the internal API (resolve/resolve_v6) that
should be backwards compatible.

The public API reflects a more strict stance now:

	by default we only look up IPv4

	you can explicitly set the require_v6 and require_v4 options for
Address objects. batou will then perform the required lookups (or not)
and it will be a hard failure if required lookups can not be performed.

We recommend to adjust those parameters on Address objects depending on your
environment, e.g. if you want IPv6 in production but not in Vagrant.

2.2.4 (2021-02-11)

	Repair File(group=), it now works just like File(owner=)

	Remove debugging code from secrets editing which caused encryption errors to crash and loose unsaved edits. (#139)

	Fix shipping of deployment code with git-bundle when using a
branch. Before the entire branch history was uploaded with each
deployment to each host (#131)

	Allow specifying a custom pip version in AppEnv.

2.2.3 (2021-01-20)

	Fix #124: notifications crashed when trying to display environment names
but used environment objects.

2.2.2 (2020-12-14)

	Another brownbag release - connecting to remote hosts was broken
after refactoring due to missing test coverage. Fixed and
added coverage.

2.2.1 (2020-12-14)

	Fix error reporting that was partially broken in 2.2.

2.2 (2020-12-10)

	Add secret files in addition to secret overrides. Using
./batou secrets edit {environment} {example.yaml} you can
now create multiple files that are all encrypted using the
environment’s keys.

To access those secrets you can read them from environment.secret_files['{example.yaml}'] in your deployment.

This feature is useful to embed longer data or formats that are
hard to embed syntactically into the cfg/ini style of the
main secrets file.

	Fix bug preventing to use nagios=True in Supervisor components,
introduced in batou 2.1.
(#98 [https://github.com/flyingcircusio/batou/issues/98])

	Make batou compatible with Python 3.9, ie asyncio’s all_tasks
has been moved to a new location.
(#93 [https://github.com/flyingcircusio/batou/issues/93])

	Actually silence SilentConfiguration errors.

	Consider unknown secret overrides (components and attributes)
to be a configuration error.

2.1 (2020-09-09)

	Bug 81: provide explicit support for JSON- and YAML-files with
proper integration to the new diff support and the ability to
update data through a “dict merge” approach.

	Bug 77: use ConfigUpdater so comments are kept when editing secrets.

	Bug 1: provide better error message if remote user does not exist.

This is also cleaning up the general error output and we’re now hiding
full tracebacks unless batou is run with –debug. People keep complaining
about traceback output and I agree that it makes things harder to read
for someone not used to scanning through them quickly.

	Bug 63: provide better error message if GPG is missing.

	Bug 65: don’t allow passing undefined namevars or undefined attributes
to the component constructor. Also prohibit (accidentally) overriding
methods.

	Bug: zsh compatibility on the remote host was broken with more
complex sudo mechanism. Added a ZSH workaround.

2.0 (2020-07-15)

	Ignore directories when verifying archive extractions to avoid
false non-convergence.

2.0b14 (2020-06-25)

	Make sudo properly conditional if we log in directly with the service user,
but avoid adding a re-connect performance penalty.

2.0b13 (2020-06-25)

	Fix git clone when cloning into the component work directory. #27

	Fix binary file handling that broke during 2to3 migration and the test
was doing the wrong thing.

	Allow marking file content as sensitive, which - for now - will suppress
diff generation/logging.

	Allow specifying the service_user attribute per host.

	Bugfixes for file components so that verify() is more robust in predictive
runs.

	Add argument ‘predicting’ to the verify() function signature.
This argument can be accepted optionally (so we’re backwards
compatible) and will indicate that we’re doing a predictive
run so we can avoid failing when trying to rely on output from
earlier components.

	Allow the Content component to predict a change based on
a not-yet-realized source file on the target system.

	Limit parallel connection setup to 5 connections at once. Also, retry
up to 3 times per connection and stagger retries according to a CSMA/CD
schema. This helps make connection setup more reliable if using SSH jump
hosts where many connections may cause sshd’s MaxStart to start rejecting
new connections. (#55)

	Allow adding data-* overrides to host sections in environments’ secrets files.

	Reduce AppEnv component directory hashes to 8 byte to avoid the shebang (#!)
127 character path limit.

	Improve verify() of archive handler so we predict a change if
something goes wrong (like not having the archive downloaded yet)

	Fix “is supervisor program running” check if it is stopped or exited

2.0b12 (2020-05-13)

	Fix broken sort of configuration errors. (#52)

2.0b11 (2020-05-13)

	Fix “is supervisord running” check in the Supervisor(enable=False) case

2.0b10 (2020-05-11)

	Fix Python 3 compatibility for Debian logrotate component.

	Improve output ordering and formatting. The diffs for predicted (or applied)
changes now appear in proper order.

	Provide better error messages when batou fails to lock a secret file.

2.0b9 (2020-05-09)

	Refactor the appenv component into smaller components (and move it to batou.lib.appenv.

	Always update pip when installing an appenv - this also fixes the Travis tests.

2.0b8 (2020-05-08)

	Replace ‘Deploying ’ with ‘Scheduling’ as this is only the moment where
we decide that a component is not blocked by another any longer and can done
as soon as the worker pool is able to do it. Specifically this means that the
following output isn’t necessarily from this component.

 Upgrading

Upgrading

Generally batou tries to be very friendly when upgrading from version to
version so you don’t have to unnecessarily change your deployments. We try to
introduce new features without breaking existing semantics.

Upgrading to the separated appenv bootstrap file

appenv is a small, separate utility that batou uses to bootstrap and
update itself, introduced in batou 2.

Initially we placed this file directly as ./batou but this turned out to be
hard to deal with due to its “meta argument parser”. New versions of batou will
automatically bootstrap this into two separate files: ./appenv and a symlink
batou -> appenv.

To upgrade your project to this schema, follow those steps:

$ curl -sL https://raw.githubusercontent.com/flyingcircusio/batou/main/appenv.py -o appenv
$ chmod +x appenv
$ rm batou
$ ln -sf appenv batou

You can now use the appenv meta commands by calling the appenv utility itself:

$./appenv --help
usage: appenv [-h] {update-lockfile,init,reset,python,run} ...

positional arguments:
 {update-lockfile,init,reset,python,run}
 update-lockfile Update the lock file.
 init Create a new appenv project.
 reset Reset the environment.
 python Spawn the embedded Python interpreter REPL
 run Run a script from the bin/ directory of the virtual env.

optional arguments:
 -h, --help show this help message and exit

batou 1.x to batou 2.x

This upgrade mainly consists of a switch from Python 2 to Python 3 but it also
does include a few details about how things are handled.

Major changes

	batou requires at least Python 3.5, anything newer is fine, too.

	File changes now show (expected) diffs.

	You can deploy to multiple hosts at once using the -j option or the jobs
option in the environment configuration.

	Secrets can now also override data- sections for hosts.

	You can now use assert instead of raise UpdateNeeded in the verify
methods.

	The embedded supervisor has been updated.

Updating your deployment

The following steps assume that you have cloned and checked out your deployment
and it is your current working directory.

$ curl -sL https://raw.githubusercontent.com/flyingcircusio/batou/main/bootstrap | sh

The generated lockfile requirements.lock might not pick up all versions of all
packages correctly (for example packages taken directly from source control will
fail) so you might want to doublecheck those and massage the lockfile in case
that this fails with something like:

ERROR: No matching distribution found for batou-ext==0.1.dev0 (from -r .batou/16f85f2d/requirements.lock (line 3))

Note

batou_ext will be updated automatically to a proper Python 3 version
and syntax.

At this point you can now update your projects’ component code to Python 3:

$ 2to3 -w components

After this you need to run batou in your development environment to see whether
any further changes may be needed.

Things you may have to change in your deployment

	Add sensitive_data=True to files that may contain sensitive data and whose
content you do not want to see in any logs. This suppresses diff generation.

	The default hash function has been changed to sha512 and thus existing
hashes relying on the default being md5 will fail.

Updating to a newer batou 2.x version

After having switched from batou 1.x to 2.x you might update to the latest
batou release once in a while. This requires the following steps:

	Edit requirements.txt and enter the desired version: batou==2.x.

	If you want to use an unreleased version use a git URL like this:
-e git+https://github.com/flyingcircusio/batou.git#egg=batou instead
of the batou==2.x requirement.

	Run ./appenv update-lockfile to update requirements.lock.

	Commit the changes and run batou so it can update itself to the new
version.

Updating from 2.2 to 2.3

To define Attributes more explicitly the default value has to be passed in
one of two ways.

	default allows to pass a final python value or use a ConfigString value
to trigger the conversion of the Attribute on a default value. This can
be used for more concise code (e.g. Address) or for documentation of the
format for environment.cfg. This way expand and map of the string
will also be done.

 Python Module Index

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 batou	

 	
 	
 batou.utils	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__add__() (batou.component.Component method)

 	__enter__() (batou.component.Component method)

 	
 	__exit__() (batou.component.Component method)

 	__or__() (batou.component.Component method)

A

 	
 	additional_config

 	Address (class in batou.utils)

 	assert_cmd() (batou.component.Component method)

 	assert_component_is_current() (batou.component.Component method)

 	
 	assert_file_is_current() (batou.component.Component method)

 	assert_no_changes() (batou.component.Component method)

 	assert_no_subcomponent_changes() (batou.component.Component method)

 	Attribute (class in batou.component)

B

 	
 	BagOfAttributes (class in batou.utils)

 	
 batou

 	module

 	batou.lib.archive.Extract (built-in class)

 	batou.lib.buildout.Buildout (built-in class)

 	batou.lib.cmmi.Build (built-in class)

 	batou.lib.download.Download (built-in class)

 	batou.lib.file.BinaryFile (built-in class)

 	batou.lib.file.Directory (built-in class)

 	batou.lib.file.File (built-in class)

 	
 	batou.lib.file.Purge (built-in class)

 	batou.lib.git.Clone (built-in class)

 	batou.lib.mercurial.Clone (built-in class)

 	batou.lib.python.Package (built-in class)

 	batou.lib.python.VirtualEnv (built-in class)

 	batou.lib.svn.Checkout (built-in class)

 	
 batou.utils

 	module

 	branch

 	build_environment

C

 	
 	call_with_optional_args() (in module batou.utils)

 	chdir() (batou.component.Component method)

 	check_package_is_module

 	checksum

 	cmd() (batou.component.Component method)

 	CmdExecutionError

 	Component (class in batou.component)

 	ComponentLoadingError

 	config

 	
 	ConfigurationError

 	configure() (batou.component.Component method)

 	(batou.component.HookComponent method)

 	configure_args

 	connect (batou.utils.Address attribute)

 	content

 	ConversionError

 	create_target_dir

 	CycleError

 	CycleErrorDetected

D

 	
 	defdir (batou.component.Component property)

 	dependencies

 	DeploymentError

 	dict_merge() (in module batou.utils)

 	
 	distribute

 	DuplicateComponent

 	DuplicateHostError

 	DuplicateHostMapping

 	DuplicateOverride

E

 	
 	encoding

 	ensure

 	environment (batou.component.Component property)

 	
 	Environment (class in batou.environment)

 	exclude

 	executable, [1]

 	expand() (batou.component.Component method)

F

 	
 	FileLockedError

 	
 	from_config_string() (batou.component.Attribute method)

G

 	
 	GPGCallError

 	
 	group

H

 	
 	handle_event() (in module batou.component)

 	HookComponent (class in batou.component)

 	
 	host (batou.component.Component property)

 	(batou.utils.NetLoc attribute)

 	Host (class in batou.host)

I

 	
 	install_options

 	InvalidIPAddressError

 	
 	IPAddressConfigurationError

 	is_template

L

 	
 	last_updated() (batou.component.Component method)

 	leading

 	link_to

 	
 	listen (batou.utils.Address property)

 	listen_v6 (batou.utils.Address property)

 	log() (batou.component.Component method)

M

 	
 	map() (batou.component.Component method)

 	merge() (batou.ReportingException class method)

 	MissingComponent

 	MissingEnvironment

 	
 	MissingOverrideAttributes

 	mode

 	
 module

 	batou

 	batou.utils

N

 	
 	namevar (batou.component.Component attribute)

 	
 	NetLoc (class in batou.utils)

 	NonConvergingWorkingSet

O

 	
 	owner

P

 	
 	pip

 	platform() (in module batou.component)

 	port (batou.utils.NetLoc attribute)

 	
 	prefix

 	provide() (batou.component.Component method)

 	python

R

 	
 	ReportingException

 	RepositoryDifferentError

 	requests_kwargs

 	require() (batou.component.Component method)

 	
 	require_one() (batou.component.Component method)

 	revision, [1]

 	root (batou.component.Component property)

 	RootComponent (class in batou.component)

S

 	
 	sensitive_data

 	setuptools

 	should_merge() (batou.ReportingException method)

 	SilentConfigurationError

 	source, [1]

 	
 	strip

 	SuperfluousComponentSection

 	SuperfluousSecretsSection

 	SuperfluousSection

 	Symlink (built-in class)

T

 	
 	target, [1], [2], [3], [4]

 	template() (batou.component.Component method)

 	template_args

 	
 	template_context

 	timeout

 	touch() (batou.component.Component method)

U

 	
 	UnknownComponentConfigurationError

 	UnsatisfiedResources

 	UnusedResources

 	
 	update() (batou.component.Component method)

 	update_unpinned

 	UpdateNeeded

V

 	
 	vcs_update

 	
 	verify() (batou.component.Component method)

 	version, [1]

W

 	
 	workdir (batou.component.Component attribute)

_static/batou.png
BATOU

_static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 batou

 		
 Introduction

 		
 Philosophy

 		
 Name

 		
 Kudos

 		
 Legal

 		
 Installation

 		
 Starting a new batou project

 		
 Local

 		
 Remote

 		
 Supported Platforms

 		
 Optional requirements

 		
 Distribution-specific installation instructions

 		
 Install batou’s requirements on Debian / Ubuntu / Mint

 		
 Install batou’s requirements on Fedora / openSUSE / RHEL / CentOS

 		
 Quickstart

 		
 Create a new project

 		
 Writing a component configuration

 		
 Local environments

 		
 Vagrant environments

 		
 Remote environments

 		
 Overriding configuration per environment

 		
 Templating from files

 		
 Storing secrets as encrypted overrides

 		
 Storing additional secrets as separate files

 		
 Using version control to ensure consistent deployments

 		
 Downloading and building software

 		
 Managing Python environments with VirtualEnv and Pip

 		
 Managing Python environments with zc.buildout

 		
 Registering programs with supervisor

 		
 Working with network addresses

 		
 Registering and discovering services

 		
 Checking a deployment configuration before running it

 		
 Predicting the changes a deployment will cause

 		
 Updating batou in an existing project

 		
 Advanced Usage

 		
 Writing a custom component (TODO)

 		
 Debugging batou runs

 		
 Using a debugger

 		
 Using “print debugging”

 		
 Using 3rd party libraries within batou

 		
 Multiple components in a single component.py (TODO)

 		
 Skipping individual hosts or components when deploying (TODO)

 		
 Events (TODO)

 		
 Using bundle transfers if the repository server is not reachable from your remote server (TODO)

 		
 Timeout (TODO)

 		
 VFS mapping for development (TODO)

 		
 VFS mapping with explicit rewrite rules (TODO)

 		
 Extended service discovery options (TODO)

 		
 Platform-specific components

 		
 Host-specific data

 		
 DNS overrides

 		
 context manager (TODO)

 		
 last_updated (TODO)

 		
 prepare, |=, component._ (TODO)

 		
 workdir overriding (TODO)

 		
 Importing components from a different component.py

 		
 Import from batou.c

 		
 Create an extension module

 		
 Command Line Usage

 		
 General options

 		
 batou deploy

 		
 batou secrets edit

 		
 batou secrets summary

 		
 batou secrets add

 		
 batou secrets remove

 		
 Managing files and directories

 		
 Files and Templates

 		
 Directories

 		
 Removing files

 		
 Extracting archive files

 		
 VFS mapping (TODO)

 		
 Downloads and VCS checkouts

 		
 Downloading files

 		
 Mercurial

 		
 Git

 		
 Subversion

 		
 Building software

 		
 Managing python installations

 		
 virtualenv

 		
 Installing packages

 		
 zc.buildout

 		
 Managing services

 		
 Supervisor (TODO)

 		
 SystemD

 		
 Component Python API

 		
 Component

 		
 Attribute (TODO)

 		
 Host (TODO)

 		
 Environment (TODO)

 		
 Environment configuration

 		
 Component assignment (TODO)

 		
 General parameters (TODO)

 		
 vfs mapping (TODO)

 		
 Root-component attribute overrides (TODO)

 		
 Jinja2 templates (TODO)

 		
 Utilities

 		
 Exceptions

 		
 Contributor’s guide

 		
 All Contributions

 		
 Be Cordial

 		
 Get Early Feedback

 		
 Contribution Suitability

 		
 Code Contributions

 		
 Code Review

 		
 New Contributors

 		
 Documentation Contributions

 		
 Bug Reports

 		
 Feature Requests

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 Testing

 		
 Run the tests

 		
 Changing the examples

 		
 Adding new migration steps

 		
 How to Help

 		
 Ideas

 		
 Development Dependencies

 		
 Runtime Environments

 		
 Downstream Repackaging

 		
 Authors

 		
 The Flying Circus Team

 		
 Patches and Suggestions

 		
 Changelog

 		
 2.3.1 (2023-05-22)

 		
 2.3 (2023-01-24)

 		
 2.3b6 (2022-12-09)

 		
 Features

 		
 Bugfixes

 		
 2.3b5 (2022-09-21)

 		
 Features

 		
 Improvements

 		
 Bug fixes

 		
 2.3b4 (2022-08-22)

 		
 Features

 		
 2.3b3 (2021-11-30)

 		
 Action needed

 		
 Bug fixes

 		
 Features

 		
 2.3b2 (2021-10-05)

 		
 Action needed

 		
 Bug fixes

 		
 Features

 		
 Other changes

 		
 2.3b1 (2021-05-21)

 		
 2.2.4 (2021-02-11)

 		
 2.2.3 (2021-01-20)

 		
 2.2.2 (2020-12-14)

 		
 2.2.1 (2020-12-14)

 		
 2.2 (2020-12-10)

 		
 2.1 (2020-09-09)

 		
 2.0 (2020-07-15)

 		
 2.0b14 (2020-06-25)

 		
 2.0b13 (2020-06-25)

 		
 2.0b12 (2020-05-13)

 		
 2.0b11 (2020-05-13)

 		
 2.0b10 (2020-05-11)

 		
 2.0b9 (2020-05-09)

 		
 2.0b8 (2020-05-08)

 		
 2.0b7 (2020-05-07)

 		
 2.0b6 (2020-04-24)

 		
 2.0b5 (2020-04-15)

 		
 2.0b4 (2020-01-13)

 		
 2.0b3 (2020-01-10)

 		
 2.0b2 (2019-10-15)

 		
 General

 		
 Features

 		
 Bugs

 		
 Testing

 		
 Build system / Development environment

 		
 2.0b1 (2019-10-11)

 		
 Upgrading

 		
 Upgrading to the separated appenv bootstrap file

 		
 batou 1.x to batou 2.x

 		
 Major changes

 		
 Updating your deployment

 		
 Things you may have to change in your deployment

 		
 Updating to a newer batou 2.x version

 		
 Updating from 2.2 to 2